Online Advanced Study Program on Helicities in Astrophysics and Beyond
(Helicity 2020-2021)

Dissipation-Range Nonuniversality
from Helicity Fastening Effects on the
Complex Singularities

FL &K jmifi:
IEEINSEFERXIFSEENEST R A

% ## M (Jian-Zhou ZHU)/jz @ SCCFIS.org

0t 262007 05 R PR P e,

000155 A1 H



Outline

1. Brief review of the advancements :
KiRERTWT: https://helicity2020.izmiran.ru/rec/zhu.mp4;
EFHEILE . Phys. Plasmas 28, 032302 (2021); doi: 10.1063/5.0031108.

Motivation: “strong” equivalence principle(s) and application(s): needing more
detailed knowledge and deeper understanding

2. Theoretical consideration with complex singularities

3. Looking closer at our numerical data: Nonuniversality
and universality in the dissipation-range: Factorization

4. (Chiral)-base-flow/(helical-)real-Schur-flow complex
singularities: numerical observations and the programme

of “strong” principle of equivalence
A — LS EEIUAISR . https://mp.weixin.qg.com/s/miUU00342LcGLgloO1-NJw
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https://doi.org/10.1063/5.0031108
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Taylor-Proudman fastening effect
in chiral/helical base flows
SRS TR 12/ T, S5

[c.f., 1. J.-Z. Zhu, Phys. Fluids 30, 031703 (2018);

3C. 1. Keylock and S. Tian ef al. have applied RSF in their respective studies
of flow structures (private communications, 2017 and 2018).
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v ™ u — uff s Y uy J‘g uz s 5The local RSF could be helpful for clarifying the global regularity issue.
o oo o And, this is reminiscent of the locally inertial coordinates, supporting the

M uz > principle of equivalence in general relativity. We can also work with other

o2 1 vector gradients, whose antisymmetric parts correspond to the magnetic

field, the electric current or else, and may formulate a kind of principle of

equivalence for the specific dynamics.
Real SChur Form (RSF) 2. Phys. Plasmas 28, 032302 (2021): weak equivalence principle]
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Strong equivalence principle?: needing more detailed
knowledge and deeper understanding

Ensemble theory of compressible
helical turbulence

Local “chiral base

flow/field (CBF)”: Equivalence Compressible
real Schur form principle helical turbulence
matrix

(loose)

analogy/parallelism

(not necessary but helpful)

gravitation theory

Local “special
relativity™
diagonal matrix

Equivalence General
principle relativity



theoretical considerations
with complex singularities



' -The first hypothesis of similarity. For the locally isotropic turbulence the

distributions F, are uniquely determined by the quantities v and é.
T First published in Russian in Dokl. Akad. Nauk SSOR (1941) 30(4). Paper received 28 December 1940. This
translation by V. Levin, reprinted here with emendations by the editors of this volume.







Kolmogorov’s (1941a) original derivation of the dissipation scale 1 was
rather different:

Kolmogorov’s first universality assumption.'* At very high, but not infinite
Reynolds numbers, all the small-scale statistical properties are uniquely and
universally determined by the scale ¢, the mean energy dissipation rate ¢ and
the viscosity v (or, equivalently, by ¢, ¢ and n).

‘Small-scale’ is here understood as scales small compared to the integral
scale, 1.e. inertial-range and dissipation-range scales. By a simple dimen-
sional argument, the first universality assumption implies the following
universal form for the energy spectrum at large wavenumbers

E(k) = &k~ F(nk), (6.69)

where F(-) is a universal dimensionless function of a dimensionless argu-
ment. By the second universality assumption of Kolmogorov (Section 6.1),
F(*) tends to a finite positive limit (the Kolmogorov constant) for van-
ishing argument. The universality of the whole function F(-) has been
questioned by Frisch and Morf (1981), using the same sort of argument
that Landau developed for the Kolmogorov constant (see Section 6.4).
There were several early attempts to determine the functional form
of F(+) at high wavenumbers. They will not be reviewed here (see, e.g..
Monin and Yaglom 1975). The most interesting remark was made by
von Neumann (1949). He observed that an analytic function has a
Fourier transform which falls off exponentially at high wavenumbers.
The logarithmic decrement is equal to the modulus 6 of the imaginary
part of the position of the singularity in complex space nearest to the
real domain. Therefore, in von Neumann’s view, exponential fall-off at
high k was more likely than the rapid algebraic fall-off proposed by
Heisenberg (1948). Actually. for a random homogeneous function, the
situation is a bit more complicated: there is a probability distribution
P(d) and thus the form for the energy spectrum at high k is the Laplace
transform of P(d) near its minimum value . (Frisch and Morf 1981).

14 Called by Kolmogorov the ‘first hypothesis of similarity’ and recast here in slightly
different language.
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"No-go universal equilibrium theory?
[from Kolmogorov to Landau and to ...... ]
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J. Qian  Gao Zhi
(Institate of Mechanics, Acadetmia  Sinica)

F(x) = 1.19(1 + 19.4x)exp{ —6.1x) (15)
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No-go universal equilibrium theory?
[from Kolmogorov to Landau and to... contd]
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And very recent publications by, e.g., D. Buaria and K. R. Sreenivasan, Physical
Review Fluids 5, 092601(R) (2020); S. Khurshid, D. Donzis and K. R. Sreenivasan,
Physical Review Fluids 3, 082601 (2018); J. E. Maggs and G. J. Morales, Phys.

Rev. Lett. 107, 185003 (2011), D. O. Martinez, S. Chen, G. Doolean, R. Kraichnan,
L.-P. Wang and Y. Zhou, J. Phys. Plasmas 57, 195 (1997)
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where y and A are nonuniversal constants [31], € is the mean energy dissipation rate, and L is the

AnalySlS Of the dlSSlpatlve range Of the energy Spec':rum m grld turbulence integral scale. The leading term in k® in the exponential is exact, whereas the factor in front of the
and in direct numerical Simulations exponential is not. Indeed, the exponent of the power law could be modified by terms of order In(k)

in the exponential, entering in the indicated O(k) corrections. The leading behavior of the correlation
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where B =5/3, « =2/3, and ;¢ and A" are positive nonuniversal constants related to y and A,
7 2/3,,—11/3 2/3 2 respectively. This behavior is valid at larce wave numbers that are still controlled by the fixed
C(t, k) =Ae""k exp|—y(eL tk O(k p s Dt i g ok A ke y
( ’ ) p[ }/( ) ( ) + ( )]’ point, which should correspond to the NDR. Indeed, in the FDR. for very small spatial scales,
the spectrum should be regularized by the viscosity and should be analytical in real space. which
means that it should decay as a pure exponential in k space. The unusual emergence of a stretched

scaling variable. Indeed, dimensional analysis (Kolmogorov theory) predicts a dynamical critical
exponent 7 = 2/3 and thus a scaling variable tk% = tk*/3. The dependence in tk is thus a breaking
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v There is NO such thing as the
uaversal-equilibrivm-spectrum-n-the-dissipationrange”
PHYSICAL REVIEW A VOLUME 23, NUMBER 5 | | MAY 1981

Intermittency in nonlinear dynamics and singularities at complex times

Uriel Frisch

Division of Applied Sciences, Harvard University, Cambridge, Massachusetts 02138
and Centre National de la Recherche Scientifique, Observatoire de Nice, BP 252, 06007 Nice-Cedex, France*

Rudolf Morf
Lyman Laboratory of Physics, Harvard University, Cambridge, Massachusetts 02138
and Laboratories RCA, Badenerstrasse 569, 8048 Zurich, Switzerland*
(Received 30 June 1980)

High-pass filtering of turbulent velocity signals is known to produce intermittent bursts. This is, as shown, a
general property of dynamical systems governed by nonlinear equations with band-limited random forces or
intrinsic stochasticity. It is shown that singularities for complex times determine the very-high-frequency behavior of

- the solution and show up in the high-pass filtered signal as bursts centered at the real part of the singularity and with
overall amplitude’ decreasing exponentially with the imaginary part. Near a singularity, nonlinear interactions,
however weak they may be on the real axis, acquire unbounded strength. Investigations of singularities by
‘nonperturbative methods is thus essential for quantitative analysis of high-frequency or high-wave-number
properties. In contrast to results based on two-point closures, the high-frequency dissipation-range spectrum is
actually not universal with respect to the low-frequency forcing. Unlimited intermittency is demonstrated, i.e., the
flatness of the high-pass filtered solution grows indefinitely with filter frequency. This gives strong support to a
conjecture of Kraichnan [Phys. Fluids 10, 2080 (1967)] about intermittency in the dissipation range of turbulent
flows. The analysis is carried out in great detail for the nonlinear Langevin equation mi = —yv —v* + f1).
Lorenz’s three mode system and Burgers’s model are also discussed. Conjectures are made about Navier-Stokes
turbulence which can be checked experimentally and numerically.
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eping also in mind the complex singularities, e.g., Kovalevskaja S, Painleve P, Lee T-D, Yang C-N ,
Bardos C, Frisch”"2, Tabor M, Weiss J, Sulem”2, Brachet M, Bessis D, Fournier J D, Caflisch R E, Kida, S,
Senouf D, Weideman JAC, Kimura Y, Walter P, Matsumoto T, Siegel M, Gargano F, Sammartino M, among
others, some of which are closest to the real domain (“most relevant”), isolated but some of which are not
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Conclusion: The difference between the two spectra can be obtained by simply
dividing one with the other.

Corollary: 1(k) is independent of k in the nonhelical case and simply characterizes
the “helicity effect” (in the interested regime).

Ansatz: I(k) is a power function (in the interested regime).



Sbme considerations partly related to complex singularities from, e.g., SulemSulemFrisch1983jcp:

Consider an analytic function v(z) with singularities at complex location z;, in the
neighborhood of which it behaves as

v(z)~(z—z)" (2.1)

(u; is assumed not to be a positive integer). The behavior of the Fourier transform for
k- +o0 is governed by the singularity of the upper half-space closest to the real
domain that is not a multiple pole; if this singularity is located at z, = x, + ié and
has an exponent u, one has

B, ~|k|~WtD g=keeixsk  f t oo, (2.2)

A derivation of this property can be found in |7, p. 255). It requires that v(z) be
growing not faster than an exponential as |z} — co and that the singularitics be
isolated points. Note that when several singularities are relevant asymptotically, |5,
may display an oscillatory behavior.
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Underlain by the “coherent” structure of the complex singularities of different variables: think about a shock
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“Proof” (with numerical results of
compressible turbulence driven by helical
and nonhelical forces):

IRELURILZimil

with Yan YANG and Jun PENG @ /7%t
[acknowledgement: Jin-Xiu XU @ 45485 1 0]
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Setup: Two flows with “everything” identical, except for the helicities.

Assumption: The spectra can be decomposed/factorized into two parts, one
affected by helicity, the other not: E(k) = [(k)*G(k), in the interested regime.

Conclusion: The difference between the two spectra can be obtained by simply
dividing one with the other.

Corollary: i(k) is independent of k in the nonhelical case and simply characterizes
the “helicity effect” (in the interested regime).

Ansatz: I(k) is a power function (in the interested regime).
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(the wavenumber denoting the beginning of the “visible” damping effect of viscosity,
in units of lattice size 2\pi/1024 m for isotropic turbulence in a cyclic box)
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Ean = 31.7 Ean = 30 Kq = VEkgnkan

(the wavenumbers denoting the beginning of dissipation effect “visible” in the spectrum,
in units of lattice size 2\pi/1024 m for isotropic turbulence in a cyclic box)

Setup: Two flows with “everything” identical, except for the helicities.

10-1 I I | I I _I_“ 10_1
:#1:-!"' . -’."".- "‘-...‘-:
Assum| ool =TRN i 7~ ligr s 0ne
\"\-.‘ — .
affected b}f_i e S ) 7 her
Y F \ E B - E
— \ - 7 —
Conclu:“*ﬁ 107 T / 110" %W simply
dividing on>" 10°| NG x )
BT OARENS P - nhRINE =
10l e i ~m=m=m hRINKE |46
Corolla ,f=-—-=-—- nhEE N . ,+  racterizes
the “helicit 10" 10° 10' 10’ 10° 10"
k/k, k/K,

Ansatz: I(k) is a power function (in the interested regime).
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k)/E(k)xk™" and R(k)/E(k)ock™5/3, (9)

a new universality agreed by the helical and nonhelical cases. The above results indicate that, in either the helical
or nonhelical case, the E|(k) and R(k) are different from the E(k) only up to power-law prefactors in the (stretch-
Jexponentially decaying in this dissipation range.

The observed Eq. (H) in this dissipation range indicates that, with again ‘j(elical)’ and ‘,(onhelical)’ and the
self-evident superscripts,

Ff(k) = Fh (k), Fit(k) = FE(k:) (11)

aff —af = -5/3=af —aF. (12)

T
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R(K)/E(K)

107¢ Barey —

Rh/EnOik‘_lz/5 and R,/FEp ock~14/15,
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R(K)/E(K)

1 5
O10

Ry /B, xk~12/5 and R,/Epoxck™ 14/15

This observation means that,

Fyi(k) = Fh(k) Fﬁ(k) Fy (k)

and aft — of = —12/5, aff —af = —14/15,

Thus, we deduce
Fl(k) = Fy (k) = F (k) = F} (k)
and Aa = af —af =11/15 = off — o},

with all exponents determined up to a constant -.
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R(K)/E(K)

1 5
O10

Ry/E,xk™ /5 and R,,/Epock™14/15.
Fy' (k) = Fh (k), Fy'(k) = FE(k)
aff —af = -5/3=af —aF.
Fh (k) Fh (k) Fﬁ(k) FEUf)
and aft — of = —12/5, aff — af = —14/15,
Thus, we deduce

Fyi(k) = Fy (k) = F}(k) = F; (k)
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The short straight line denotes the power law o< k~*/*° for
Ey(k)/E.(k) (‘hE/nE’) and Ry(k)/Rn(k) (‘hR/nR’), veri-
fying the result deduced and extending to 5E,(k)/E), (k)
(‘6hE|/nE,;’), in the range circled out.



“Universal scaling in the inertial
range”?
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Evaluation of the common part, k7 F'(k), by fitting the spectra however can be subtle due to unknown ansatz for
F( ]1, and is not of our current interest.

Turbulence compressibility reduction with helicity is theoretically analyzed with the argument of
complex singularities. Isotropic turbulence simulated in a cyclic box verifies smaller compressibility-
relevant spectra in the case of helical, compared to nonhelical, large-scale forcing, with a difference
of Aa = 11/15 found in the power-law prefactor of the compressibility-relevant-mode spectrum
x k*F(k) in terms of the (normalized) wavenumber k: while o in the helical case is smaller, F'(k)
is however the same as in the nonhelical one, indicating some weaker type of universality.

Setup: Two flows with “everything” identical, except for the helicities.

Assumption: The spectra can be decomposed/factorized into two parts, one
affected by helicity, the other not: E(k) = |(k)*G(k), in the interested regime.

Conclusion: The difference between the two spectra can be obtained by simply
dividing one with the other.

Corollary: i(k) is independent of k in the nonhelical case and simply characterizes
the “helicity effect” (in the interested regime).

Ansatz: (k) is a power function (in the interested regime).
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(sub-)summary

* Less “compressive” in the helical case

« “Overall weaker complex singularities” (not a
very precise expression, due to the random
nature) measured by \Delta \alpha = 11/15 deep
In the dissipation range

 |nertial range seems to be universal [with
respective to the (helical) forcing scheme used]
In the scaling exponent; universal/common F
deep in the dissipation range
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Numerical real Schur turbulence in a cyclic box
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| stopped here due to time limit: some of the materials for this subsection are availabe from the references of the Abstract
and from the link given at the bottom of the Outline page
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