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Motivation

» Classical helicity measures linkage of magnetic flux

H(B):/VA-BdV, VxA=B, n-B|, =0

 However, domains that are bounded by a flux surface are rare. In most cases
we have to use the relative helicity (Berger & Field 1984), (Finn & Antonsen

1985)
Hp = fV(A -+ Aref) - (B — Bref) d3x

 Additional complication: expression depends on the choice of reference field.
Interpretation becomes difficult when the reference field is time-dependent.



Motivation

* Helicity Is an integral over the domain, it does not detect any substructures
with net zero helicity

» Attempts to overcome extract more detailed information from the linking
structure have led to the development of field line helicity.



Field Line Helicity

Field line mapping generated by
d _ B(¢(0,2)) ! w
dz (3307 Z) ~ B.(¢(xo,2))

Field line helicity is defined as >

A(zg) = fmi(mg) A -dl

1 B(¢(xo),z
= J) (o), 2) - 2Xzoka) g, 0




Field Line Helicity and Relative Helicity

Choose a reference field with vector potential

V X Aref — Bref

Relative helicity is given by

H(B; Bref) = fV(A -1 Aref) - (B — Bref) d3x A A

Fix the gauge as A X 7i|gy = Arer X 7t|gv , then

H B: Bref fD 1130) d2370




Properties of Field Line Helicity

A(zg) = fi(xo) A -dl

A X ntlgy = Arer X 1oy

Under the above gauge condition, the field line helicity is gauge invariant only
on periodic field lines.

Aref

— AL+ VYW

Implies

A(zo)

— A(xo)

V(P (x0)) — W(zo)

It IS, however, an invariant under ideal deformations of the flux tube domain that
leave the boundary fixed.

It also uniquely determines the topology of the magnetic field. [Yeates & Hornig
Physics of Plasmas 20.1 (2013)]

Physically the field line helicity can be interpreted, for a single field line, as the
averaged flux between the field line and the side boundary of the flux tube.



Field Line Helicity: Example
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H = 0 but the evolution of A(xo) reveals the presence of
additional constraints. E.g. there 1s no annihilation

between positive and negative regions of A(Xo).
[ Yeates, Hornig & Wilmot-Smith PRL 105 (2010)]




The Calabi Invariant

The Calabi invariant is a real-valued map on the space of smooth functions on a disk D,
that preserves the symplectic 2-form or area form.

Cal : C*° (D, warea, 0D) —

It can be shown that the field line mapping belongs to the space of smooth functions,

¢ € C°°(D, warea)

where a subset of field line mappings also preserve the boundary.

The area 2-form is defined, in the flux tube geometry, as

Warea = B - 1N dat(z)




The Calabi Invariant

Define the Calabi invariant (Calabi 1970) as N

Ca,l(qb) = fD h(il?) Warea

For a cylindrical domain this becomes

Cal(¢) = [, h(x) B,(z) d°z

where h is a smooth function satisfying dh = ¢*a — o, hl|yp =0, Plgp =1d, and da = w

The above can be reformulated to obtain

Cal(¢) = — [, d*a N«

Comparison with (field line) helicity shows : Cal(¢) = H(B) and 4 = h



The Calabi Invariant

Differential Geometry

Cal(q)):/l)h(il?,y)warea

da = Warea

Vs. Vector Analysis

Cal(®) :/Dh(a?,y)Bz(x,y) dx dy

V xa= B,(z,y)€,

a(r,y) = agz€z+ ay€y,
1 J / /] — 1 g / /] —
- B.(z,y )dy €, + = B.(z',y)dz'€,
2 /.. 2 /.
0P 0DY
_ T HY | T HY ~
dh — ¢*Oé — (X Vh($7y) _ (0“33((1) 7(1) ) or ay(q) 7(1) ) o1 am(xay)) Cx




A Boundary Correction Term

For case where the field line mapping is not identity on the boundary, we can separate the field line
mapping into two component flows

~

¢ = @0,

where gZ indicates the flow from footpoints on the interior of the disk and §b¢ is the flow

restricted to a rotation on the boundary.
We can then calculate the Calabi invariant as follows:

Cal(¢) = Cal(¢ o ¢,,) = Cal(¢) + Cal(¢,,)
Cal(¢,) = 2ma2 (R)

In the radially symmetric case we can interpret the turning angle 6 as

0 =L [7" . (R) dy

27 JO



Calculating with the Calabi Invariant

Example: Consider a spherical force-free field.

B =u(r,0) e +v(r,0) eg + w(r,0) e

0,5_; u(r7 9) — 74_3/2 J% ()\7") COS(H),

v(r,0) = — =2 (rl/zJ%()\'r)) sin(6),

2r Or

w(r,0) = 537 J3 (Ar) sin(0)




Calculating with the Calabi Invariant

Example: Consider a spherical force-free field.
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Calculating with the Calabi Invariant

Example: Consider a spherical force-free field.

Restrict the field line mapping to
a cross-sectional disk D,

X ¢l (rye) = (r,o+ f(r))

-0.5 -1 !
0 H -0.5 4.9+

) 0.5 05

Cal(¢|p) = 1.270412733 16
H(B) =1.270412734 0 01 02 03 04 05 06

r




Relative Helicity and the Calabi Invariant

Consider the map ¢ o¢: D — D forming an automorphism of the disk. 1

pi=¢tod B =B(¢) Yt = Bo(dt)

el N

§ @ooc

The Calabi invariant for this configuration is given by

Cal(¥) = [, A-Bd®z + [, Ares Bres d°




Relative Helicity and the Calabi Invariant

Define the ‘mirror image’ under 2 — —Z2

[

dzgef — Bref(¢ref) \

such that f
\

ng Aref ' Bref d337 — ng Aref ' Bref d3$

0.0 O

Then the Calabi invariant becomes

Cal(¢) — fVl A-B de o fV2 Aref ’ Bref d3$

— HR(B7 Bref)

AR




Relative Helicity and the Calabi Invariant

Let V' be a volume separated into two sub-volumes V1 and V5 along an interface [ .

Define magnetic fields by

> ¢2ref
) ¢1ref

|
Blref(xo) it x € Vl,

B —
(370) Bzref(a?o) if x € V2

Bl(x()) if x € Vi,
BQ(QZ()) if x € V5

Bref(mO) — {
P1

0 ¢ 6

Claim: The relative helicity of B in the volume V' with respect to the reference field Bref

satisfies the following:

HR(B; Bref) — HR(Bl; Blref) HR(B2; BZref)




Relative Helicity and the Calabi Invariant

Set up an automorphism of a disk given by

Y 1= Plref © Prres© G201 : D = D
We aim to show that
Cal(v)) := Hr(B,Bief) = Hr(B1,Biret) + Hr(B, Bief)
(= Cal(¢1,er © ¢1) + Cal(daret © ¢2))
It then remains to show that Cal(y)) = Cal(¢,.1; 0 ¢2) + Cal(¢j.is 0 ¢1):
Cal(h) = Cal(¢] et © Porer © P2 © H1)

= Cal(pl,ee © Pornp © P2 © B1ref © P iis © 1)

= Cal(¢1,e5 © Pares © P2 © Piref) + Cal(dy,er © ¢1)

= Cal(Pg,es © P2) + Cal(P],e5 © P1)




Asymptotic Field Line Helicity

In general, field line helicity is only gauge invariant for
periodic field lines (and in that case, only for certain periods).

To overcome this one can introduce an

‘asymptotic’ version of the field line helicity.

We have to calculate the limit of the field line helicity

after n-many iterations.



Asymptotic Field Line Helicity

Define an iterative map ¢™ : D — D and an associated field line helicity 4(")

where

n _ n—1 k
A (z0) = > p"g A(9F) (20)).
If we let n — o0 then we can define an averaged field line helicity in the asymptotic limit

A® (20) = limp, 00 LA™ (20) = lim,, 00 = 370 A(9™ (20))

In particular, the asymptotic field line helicity .A>(xo) is gauge invariant.



Application: Spherical force-free field
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Field lines wind on tori, hence the asymptotic field line helicity is constant in ¢-direction on the
global cross section (disk).



Application: Iterative Braiding

Introduce a braid-like map that introduces left handed and
right handed twist in equal measure.

Classical helicity should measure a total of zero winding
for such a field configuration.

We attempt to calculate the winding across a cross-sectional
disk after a large number of iterations.

In the process we pick out local winding structures missed |
by the classical helicity. |



Application: Iterative Braiding

Magnetic braid set up such
that it has ergodic and
regular regions.




Summary

The Calabi invariant can be used to calculate helicity.

Obtained a general formula for the field line helicity over successive iterations
of a braid.

We can construct a gauge invariant field line helicity in the asymptotic limit of
an iterative field line mapping.

We can investigate local structures of winding configurations not picked up by
a classical helicity integral.
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