Helicity 2020: Online Advanced Study Program on Helicities in Astrophysics and Beyond 25 March 2021

Unappreciated helicity effects in hydrodynamic and magnetohydrodynamic turbulence

Nobumitsu Yokoi

Institute of Industrial Science, University of Tokyo

Topics

• Theory for inhomogeneous turbulence

How to tackle strongly nonlinear and inhomogeneous/anisotropic turbulence

- Dynamo coupled with large-scale flow
 Cross helicity effect in dynamo
- Global flow generation due to helicities

Helicity and cross-helicity effects in momentum transport

How to tackle strongly nonlinear and inhomogeneous/anisotropic turbulence

Equation of fluctuating velocity $\mathbf{u} = \mathbf{U} + \mathbf{u}', \ \mathbf{U} = \langle \mathbf{u} \rangle, \ \mathbf{u}' = \mathbf{u} - \langle \mathbf{u} \rangle$

$$\frac{\partial u'_{\alpha}}{\partial t} + U_a \frac{\partial u'_{\alpha}}{\partial x_a} = \frac{-u'_a \frac{\partial U_{\alpha}}{\partial x_a}}{\partial x_a} - u'_a \frac{\partial u'_{\alpha}}{\partial x_a} + \frac{\partial}{\partial x_a} \left\langle u'_a u'_{\alpha} \right\rangle - \frac{\partial p'}{\partial x_{\alpha}} + \nu \frac{\partial^2 u'_{\alpha}}{\partial x_a^2}$$

turbulence-mean velocity turbulence-turbulence interaction interaction

Instability approach

$$\frac{\partial u'_{\alpha}}{\partial t} + U_a \frac{\partial u'_{\alpha}}{\partial x_a} = -u'_a \frac{\partial U_{\alpha}}{\partial x_a} - \frac{\partial p'^{(\mathrm{R})}}{\partial x_\alpha} + \nu \frac{\partial^2 u'_{\alpha}}{\partial x_a^2}$$

Linear in ${\bf u}'$ and $p'^{\rm (R)}$, each (Fourier) mode evolves independently

Closure approach

$$\frac{\partial u'_{\alpha}}{\partial t} + U_a \frac{\partial u'_{\alpha}}{\partial x_a} = -u'_a \frac{\partial u'_{\alpha}}{\partial x_a} + \frac{\partial}{\partial x_a} \left\langle u'_a u'_{\alpha} \right\rangle - \frac{\partial p'^{(S)}}{\partial x_\alpha} + \nu \frac{\partial^2 u'_{\alpha}}{\partial x_a^2}$$

Homogeneous turbulence, no dependence on large-scale inhomogeneity

Homogeneous turbulence

Navier–Stokes equation in the wave-number space

$$ik_{a}\hat{u}_{a}(\mathbf{k};t) = 0$$

$$\frac{\partial\hat{u}_{\alpha}(\mathbf{k};t)}{\partial t} - ik_{a} \iint d\mathbf{p}d\mathbf{q}\delta(\mathbf{k} - \mathbf{p} - \mathbf{q})\hat{u}_{a}(\mathbf{p};t)\hat{u}_{\alpha}(\mathbf{q};t)$$

$$= ik_{\alpha}\hat{p}(\mathbf{k};t) - \nu k^{2}\hat{u}_{\alpha}(\mathbf{k};t)$$

$$\hat{p}(\mathbf{k};t) = -\frac{k_{a}k_{b}}{k^{2}} \iint d\mathbf{p}d\mathbf{q}\delta(\mathbf{k} - \mathbf{p} - \mathbf{q})\hat{u}_{a}(\mathbf{p};t)\hat{u}_{b}(\mathbf{q};t)$$

$$\Rightarrow \frac{\partial\hat{u}_{\alpha}(\mathbf{k};t)}{\partial t} = -\nu k^{2}\hat{u}_{\alpha}(\mathbf{k};t) + iM_{\alpha ab}(\mathbf{k}) \iint d\mathbf{p}d\mathbf{q}\delta(\mathbf{k} - \mathbf{p} - \mathbf{q})\hat{u}_{a}(\mathbf{p};t)\hat{u}_{b}(\mathbf{q};t)$$

where
$$M_{\alpha ab}(\mathbf{k}) = \frac{1}{2} \left[k_b D_{\alpha a}(\mathbf{k}) + k_a D_{\alpha b}(\mathbf{k}) \right]$$

with the projection operator $D_{\alpha\beta}(\mathbf{k}) = \delta_{\alpha\beta} - \frac{k_{\alpha}k_{\beta}}{k^2}$

Renormalized perturbation expansion theory

Kraichnan, R. H. (1959) "The structure of isotropic turbulence **at very high Reynolds number**," J. Fluid Mech. **5**, 497

Velocity

Response function

$$G'_{\alpha\beta}(\mathbf{k};t,t') = G^{(\mathrm{L})}_{\alpha\beta}(\mathbf{k};t,t') + iM_{cab}(\mathbf{k}) \iint \delta(\mathbf{k}-\mathbf{p}-\mathbf{q})d\mathbf{p}d\mathbf{q}$$

$$\times \int_{t'}^{t} dt_1 G^{(\mathrm{L})}_{\alpha c}(\mathbf{k};t,t_1) u_a(\mathbf{p};t_1) G'_{b\beta}(\mathbf{q};t,t_1)$$

$$(\mathbf{k}) = \int_{t'}^{a} \int_{t'}^{k} dt_1 G^{(\mathrm{L})}_{\alpha c}(\mathbf{k};t,t_1) u_a(\mathbf{p};t_1) G'_{b\beta}(\mathbf{q};t,t_1)$$

6

Perturbation expansion

Correlation function Q_{α}

Renormalization

 $Q_{\alpha\beta}(\mathbf{k},\mathbf{k}';t,t')$

 $t \qquad t' = t \quad D \quad t' \quad + \quad 4 \quad t \quad D \quad t_1 \quad t_2 \quad D \quad t' \quad t_2 \quad D \quad t'$

a part of the infinite series with respect to the propagators is **summed up to the infinite orders**

DIA = line (propagator) renormalization (lowest-order in vertex)

Multiple-scale analysis

mirror-symmetric case: Yoshizawa, Phys. Fluids **27**, 1377 (1984) non-mirror-symmetric case: Yokoi & Yoshizawa, Phys. Fluids A **5**, 464 (1993)

Fast and slow variables

 $\boldsymbol{\xi} = \mathbf{x}, \ \mathbf{X} = \delta \mathbf{x}; \ \tau = t, \ T = \delta t$

Slow variables **X** and *T* change only when **x** and *t* change much.

$$f = F(\mathbf{X}; T) + f'(\boldsymbol{\xi}, \mathbf{X}; \tau, T)$$
$$\nabla = \nabla_{\boldsymbol{\xi}} + \delta \nabla_{\mathbf{X}}; \quad \frac{\partial}{\partial t} = \frac{\partial}{\partial \tau} + \delta \frac{\partial}{\partial T}$$

Velocity-fluctuation equation

$$\begin{aligned} \frac{\partial u'_{\alpha}}{\partial \tau} + U_a \frac{\partial u'_{\alpha}}{\partial \xi_a} + \frac{\partial}{\partial \xi_a} u'_a u'_{\alpha} + \frac{\partial p'}{\partial \xi_{\alpha}} - \nu \nabla_{\xi}^2 u'_{\alpha} \\ &= \delta \left(-u'_a \frac{\partial U_{\alpha}}{\partial X_a} - \frac{Du'_{\alpha}}{DT} - \frac{\partial p'}{\partial X_{\alpha}} - \frac{\partial}{\partial X_a} \left(u'_a u'_{\alpha} - R_{a\alpha} + 2\nu \frac{\partial^2 u'_{\alpha}}{\partial X_a \partial \xi_a} \right) \right) \\ &+ \delta^2 \left(\nu \nabla_X^2 u'_{\alpha} \right) \end{aligned}$$

$$\frac{\partial u'_a}{\partial \xi_a} + \delta \frac{\partial u'_a}{\partial X_a} = 0 \qquad \text{where} \quad \frac{D}{DT} = \frac{\partial}{\partial T} + \mathbf{U} \cdot \nabla_X$$

Scale parameter expansion
$$f' = f'_0 + \delta f'_1 + \delta^2 f'_2 + \dots = \sum_n \delta^n f'_n$$

Response function $\frac{\partial G'_{\alpha\beta}\left(\mathbf{k};\tau,\tau'\right)}{\partial \tau} + \nu k^2 G'_{\alpha\beta}\left(\mathbf{k};\tau,\tau'\right) \\ -2iM^{\alpha ab}(\mathbf{k}) \iint \delta(\mathbf{k}-\mathbf{p}-\mathbf{q}) d\mathbf{p} d\mathbf{q} u'_{0a}\left(\mathbf{p};\tau\right) G'_{b\beta}\left(\mathbf{q};\tau,\tau'\right) \\ = D_{\alpha\beta}(\mathbf{k})\delta\left(\tau-\tau'\right)$

1st-order field

$$\begin{aligned} \frac{\partial u_{1\alpha}'(\mathbf{k};\tau)}{\partial \tau} + \nu k^2 u_{1\alpha}'(\mathbf{k};\tau) \\ &-2iM_{\alpha ab}\left(\mathbf{k}\right) \iint \delta(\mathbf{k} - \mathbf{p} - \mathbf{q}) d\mathbf{p} d\mathbf{q} u_{0a}'(\mathbf{p};\tau) u_{S1b}'(\mathbf{q};\tau) \\ &= -D_{\alpha b}(\mathbf{k}) u_{0a}'(\mathbf{k};\tau) \frac{\partial U_b}{\partial X_a} - D_{\alpha a}(\mathbf{k}) \frac{D u_{0a}'(\mathbf{k};\tau)}{D T_1} \\ &+2M_{\alpha ab}(\mathbf{k}) \iint \delta(\mathbf{k} - \mathbf{p} - \mathbf{q}) d\mathbf{p} d\mathbf{q} \frac{q_b}{q^2} u_{0a}'(\mathbf{p};\tau) \frac{\partial u_{0c}'(\mathbf{q};\tau)}{\partial X_{1c}} \\ &-D_{\alpha d}(\mathbf{k}) M_{abcd}(\mathbf{k}) \iint \delta(\mathbf{k} - \mathbf{p} - \mathbf{q}) d\mathbf{p} d\mathbf{q} \frac{\partial}{\partial X_{1c}} \left(u_{0a}'(\mathbf{p};\tau) u_{0b}'(\mathbf{q};\tau)\right) \end{aligned}$$

$$\mathbf{u}_{1}'(\mathbf{k};\tau) = \mathbf{u}_{\mathrm{S1}}'(\mathbf{k};\tau) - i\frac{\mathbf{k}}{k^{2}}\frac{\partial u_{0a}'}{\partial X_{\mathrm{I}a}} \qquad \mathbf{k}\cdot\mathbf{u}_{\mathrm{S1}}'(\mathbf{k};\tau) = 0$$

Formal solution in terms of $G'_{\alpha\beta}(\mathbf{k};\tau,\tau')$

$$\begin{split} u'_{S1\alpha}(\mathbf{k};\tau) &= -\frac{\partial U_b}{\partial X_a} \int_{-\infty}^{\tau} d\tau_1 G'_{\alpha b}(\mathbf{k};\tau,\tau_1) u'_{0a}(\mathbf{k};\tau_1) \\ &- \int_{-\infty}^{\tau} d\tau_1 G'_{\alpha a}(\mathbf{k};\tau,\tau_1) \frac{D u'_{0a}(\mathbf{k};\tau_1)}{D T_1} \\ &+ 2M_{dab}(\mathbf{k}) \iint \delta(\mathbf{k} - \mathbf{p} - \mathbf{q}) d\mathbf{p} d\mathbf{q} \int_{-\infty}^{\tau} d\tau_1 G'_{\alpha d}(\mathbf{k};\tau,\tau_1) \\ &\times \frac{q_b}{q^2} u'_{0a}(\mathbf{p};\tau_1) \frac{\partial u'_{0c}(\mathbf{q};\tau_1)}{\partial X_{Ic}} \\ &- M_{abcd}(\mathbf{k}) \iint \delta(\mathbf{k} - \mathbf{p} - \mathbf{q}) d\mathbf{p} d\mathbf{q} \int_{-\infty}^{\tau} d\tau_1 G'_{\alpha d}(\mathbf{k};\tau,\tau_1) \\ &\times \frac{\partial}{\partial X_{Ic}} \left(u'_{0a}(\mathbf{p};\tau_1) u'_{0b}(\mathbf{q};\tau_1) \right) \end{split}$$

 $u'_{1\alpha}(\mathbf{k};t) = \cdots$ in terms of the force terms (r.h.s.) and response functions

Calculation of turbulent correlations with DIA

$$\langle f'(\mathbf{x};t)g'(\mathbf{x};t)\rangle = \int d\mathbf{k} \left\langle f'(\mathbf{k};\tau)g'(\mathbf{k};\tau)\right\rangle / \delta(\mathbf{0})$$

=
$$\int d\mathbf{k} \left(\left\langle f'_0 g'_0 \right\rangle + \left\langle f'_0 g'_1 \right\rangle + \left\langle f'_1 g'_0 \right\rangle + \cdots \right) / \delta(\mathbf{0})$$

10

Mean-field equations in compressible MHD

Density

 $\frac{\partial \overline{\rho}}{\partial t} + \nabla \cdot (\overline{\rho} \mathbf{U}) = -\nabla \cdot \langle \rho' \mathbf{u}' \rangle$ Means and fluctuations $f = F + f', \quad F = \langle f \rangle$ Momentum $\frac{\partial}{\partial t}\overline{\rho}U^{\alpha} + \frac{\partial}{\partial r^{a}}\overline{\rho}U^{a}U^{\alpha}$ $= -(\gamma_0 - 1)\frac{\partial}{\partial x^{\alpha}}\overline{\rho}Q + \frac{\partial}{\partial x^{\alpha}}\mu S^{a\alpha} + (\mathbf{J} \times \mathbf{B})^{\alpha}$ $-\frac{\partial}{\partial x^{\alpha}}\left(\overline{\rho}\left\langle u^{\prime a}u^{\prime \alpha}\right\rangle -\frac{1}{\mu_{0}}\left\langle b^{\prime a}b^{\prime \alpha}\right\rangle +U^{a}\left\langle \rho^{\prime}u^{\prime \alpha}\right\rangle +U^{\alpha}\left\langle \rho^{\prime}u^{\prime a}\right\rangle \right)+R_{U}^{\alpha}$ $\frac{\partial}{\partial t}\overline{\rho}Q + \nabla \cdot (\overline{\rho}\mathbf{U}Q) = \nabla \cdot \left(\frac{\kappa}{C_{V}}\nabla Q\right) - \nabla \cdot (\overline{\rho}\langle q'\mathbf{u}'\rangle + Q\langle \rho'\mathbf{u}'\rangle + \mathbf{U}\langle \rho'q'\rangle)$ Internal energy $-(\gamma_0 - 1)\left(\overline{\rho}Q\nabla\cdot\mathbf{U} + \overline{\rho}\langle q'\nabla\cdot\mathbf{u}'\rangle + Q\langle \rho'\nabla\cdot\mathbf{u}'\rangle\right) + R_Q$

Magnetic field

$$\frac{\partial \mathbf{B}}{\partial t} = \nabla \times (\mathbf{U} \times \mathbf{B} + \langle \mathbf{u}' \times \mathbf{b}' \rangle) + \eta \nabla^2 \mathbf{B}$$

where $R_U^{\alpha} = -\frac{\partial}{\partial t} \langle \rho' u'^{\alpha} \rangle - \frac{\partial}{\partial x^a} \langle \rho' u'^a u'^{\alpha} \rangle$

 $-(\gamma_0-1)\frac{\partial}{\partial r^{\alpha}}\langle \rho'q'\rangle - \frac{1}{2\mu_0}\frac{\partial}{\partial r^{\alpha}}\langle \mathbf{b}'^2\rangle$

etc.

Statistical assumptions on the lowest-order (basic) fields

Basic fields are homogeneous isotropic

$$\begin{split} \frac{\langle \rho_{\rm B}'(\mathbf{k};\tau)\rho_{\rm B}'(\mathbf{k}';\tau')\rangle}{\delta(\mathbf{k}+\mathbf{k}')} &= \langle Q_{\rho}'(k;\tau,\tau')\rangle = Q_{\rho}(k;\tau,\tau'),\\ \frac{\langle \vartheta_{\rm B}^{\prime\,\alpha}(\mathbf{k};\tau)\chi_{\rm B}^{\prime\,\beta}(\mathbf{k}';\tau')\rangle}{\delta(\mathbf{k}+\mathbf{k}')} \\ &= D^{\alpha\beta}(\mathbf{k})Q_{\vartheta\chi{\rm S}}(k;\tau,\tau') + \Pi^{\alpha\beta}(\mathbf{k})Q_{\vartheta\chi{\rm C}}(k;\tau,\tau') + \frac{i}{2}\frac{k^{c}}{k^{2}}\epsilon^{\alpha\beta c}H_{\vartheta\chi}(k;\tau,\tau') \\ \frac{\langle q_{\rm B}'(\mathbf{k};\tau)q_{\rm B}'(\mathbf{k}';\tau')\rangle}{\delta(\mathbf{k}+\mathbf{k}')} &= \langle Q_{q}'(k;\tau,\tau')\rangle = Q_{q}(k;\tau,\tau'), \end{split}$$

with solenoidal and dilatational projection operators

$$D^{\alpha\beta}(\mathbf{k}) = \delta^{\alpha\beta} - \frac{k^{\alpha}k^{\beta}}{k^2}, \quad \Pi^{\alpha\beta}(\mathbf{k}) = \frac{k^{\alpha}k^{\beta}}{k^2}$$

Dynamo coupled with large-scale flows: Cross-helicity effect in dynamo

$$\frac{\partial \mathbf{u}'}{\partial t} + (\mathbf{U} \cdot \nabla)\mathbf{u}' = (\mathbf{B} \cdot \nabla)\mathbf{b}' + (\mathbf{b}' \cdot \nabla)\mathbf{B} - (\mathbf{u}' \cdot \nabla)\mathbf{U} + \cdots$$
$$\frac{\partial \mathbf{b}'}{\partial t} + (\mathbf{U} \cdot \nabla)\mathbf{b}' = (\mathbf{B} \cdot \nabla)\mathbf{u}' - (\mathbf{u}' \cdot \nabla)\mathbf{B} + (\mathbf{b}' \cdot \nabla)\mathbf{U} + \cdots$$

$$\left\langle \frac{\partial \mathbf{u}'}{\partial t} \times \mathbf{b}' \right\rangle + \left\langle \mathbf{u}' \times \frac{\partial \mathbf{b}'}{\partial t} \right\rangle = \cdots$$

$$\begin{aligned} \tau \langle \mathbf{u}' \times \left[(\mathbf{b}' \cdot \nabla) \mathbf{U} \right] + \left[(\mathbf{u}' \cdot \nabla) \mathbf{U} \right] \times \mathbf{b}' \rangle^{\alpha} \\ &= \epsilon^{\alpha a b} \tau \langle u'^{a} b'^{c} \rangle \frac{\partial U^{b}}{\partial x^{c}} - \epsilon^{\alpha b a} \tau \langle b'^{a} u'^{c} \rangle \frac{\partial U^{b}}{\partial x^{c}} \\ &= \tau \left(\langle u'^{a} b'^{c} \rangle + \langle u'^{c} b'^{a} \rangle \right) \epsilon^{\alpha a b} \frac{\partial U^{b}}{\partial x^{c}} \end{aligned}$$

$$\langle \mathbf{u}' \times \mathbf{b}' \rangle = \cdots + \tau \langle \mathbf{u}' \cdot \mathbf{b}' \rangle \nabla \times \mathbf{U} + \cdots$$

cross helicity

α and cross-helicity effects (Yokoi, GAFD 107, 114, 2013)

Numerical validation of cross-helicity effect

DNS of electromotive force in Kolmogorov flow (Yokoi & Balarac, 2011)

(Rahbarnia, et al. (2012) ApJ

Cross-helicity dynamo for fully convective stars (cool stars)

Pipin & Yokoi (2018) Astrophys. J. 859, 18

For a particular case of the fast rotating stars with solid body rotation regime, we show a possibility to sustain the strong dipolar B-field via $\alpha^2\gamma^2$ dynamo.

Relative importance of cross-helicity to differential-rotation effects

$$\frac{\text{(cross-helicity effect)}}{\text{(differential-rotation effect)}} = \frac{|\nabla \times (\gamma \nabla \times \mathbf{U})|}{|\nabla \times (\mathbf{U} \times \mathbf{B})|} \\ \sim \frac{\langle \mathbf{u}' \cdot \mathbf{b}' \rangle}{D\left(\frac{\partial U}{\partial r}\right) B^r} \frac{\tau_{\text{turb}}}{\tau_{\text{mean}}} \sim \frac{\langle \mathbf{u}' \cdot \mathbf{b}' \rangle}{\delta U B^r} Ro^{-1} = \frac{\langle \mathbf{u}' \cdot \mathbf{b}' \rangle}{\delta U B^r} \frac{K/\varepsilon}{D/\delta U}$$

Spatial distribution of cross helicity

Relative magnitude of the cross-helicity to the differential rotation terms

Provided by Mark Miesch (2016)

Global flow generation

Inhomogeneous helicity and cross helicity effects in momentum transport

Vortex generation

Vorticity

$$\begin{split} \omega = \nabla \times \mathbf{u} & \frac{\partial \omega}{\partial t} = \nabla \times (\mathbf{u} \times \omega) + \underbrace{\frac{\nabla \rho \times \nabla p}{\rho^2}}_{\text{baroclinicity}} + \nu \nabla^2 \omega \\ \text{baroclinicity} & \text{cf., Biermann battery} & -\frac{\nabla n_e \times \nabla p_e}{n_e^2 e} \end{split}$$
Mean vorticity

$$\begin{aligned} \frac{\partial \Omega}{\partial t} &= \nabla \times (\mathbf{U} \times \Omega) + \nabla \times \underbrace{\langle \mathbf{u}' \times \omega' \rangle}_{\mathbf{V}_{\mathrm{M}}} + \nu \nabla^2 \Omega \\ \mathbf{\Omega} &= \nabla \times \mathbf{U} & \mathbf{V}_{\mathrm{M}} \end{aligned}$$
Rean magnetic field $\begin{aligned} \frac{\partial \mathbf{B}}{\partial t} &= \nabla \times (\mathbf{U} \times \mathbf{B}) + \nabla \times \underbrace{\langle \mathbf{u}' \times \mathbf{b}' \rangle}_{\mathbf{V}_{\mathrm{M}}} + \eta \nabla^2 \mathbf{B} \\ & \text{electromotive force} \end{aligned}$
Reynolds stress $\mathcal{R}^{ij} = \langle u'^i u'^j \rangle$

$$V_{\mathrm{M}}^i = -\frac{\partial \mathcal{R}^{ij}}{\partial t} + \frac{\partial K}{\partial t} \end{aligned}$$

Reynolds stress
$$\mathcal{R}^{ij} = \langle u'^i u'^j \rangle$$
 $V^i_{\mathrm{M}} = -\frac{\partial \mathcal{R}^{ij}}{\partial x^j} + \frac{\partial \mathcal{R}^{ij}}{\partial x^i}$

Theoretical formulation

Basic field: homogeneous isotropic but non-mirror-symmetric $\frac{\langle u'_{0\alpha}(\mathbf{k};\tau)u'_{0\beta}(\mathbf{k};\tau)\rangle}{\delta(\mathbf{k}+\mathbf{k}')} = D_{\alpha\beta}(\mathbf{k})Q_0(k;\tau,\tau') + \frac{i}{2}\frac{k_a}{k^2}\epsilon_{\alpha\beta a}H_0(k;\tau,\tau')$

Calculation of the Reynolds stress

$$\begin{split} \left\langle u^{\prime \alpha} u^{\prime \beta} \right\rangle &= \left\langle u^{\prime \alpha}_{\mathrm{B}} u^{\prime \beta}_{\mathrm{B}} \right\rangle + \left\langle u^{\prime \alpha}_{\mathrm{B}} u^{\prime \beta}_{01} \right\rangle + \left\langle u^{\prime \alpha}_{01} u^{\prime \alpha}_{\mathrm{B}} u^{\prime \beta}_{\mathrm{B}} \right\rangle + \cdots \\ &+ \left\langle u^{\prime \alpha}_{\mathrm{B}} u^{\prime \alpha}_{10} \right\rangle + \left\langle u^{\prime \alpha}_{10} u^{\prime \beta}_{\mathrm{B}} \right\rangle + \cdots \end{split}$$

$$\left\langle u^{\prime \alpha} u^{\prime \beta} \right\rangle_{\mathrm{D}} = -\nu_{\mathrm{T}} \mathcal{S}^{\alpha \beta} + \left[\Gamma^{\alpha} \left(\Omega^{\beta} + 2\omega_{\mathrm{F}}^{\beta} \right) + \Gamma^{\beta} \left(\Omega^{\alpha} + 2\omega_{\mathrm{F}}^{\alpha} \right) \right]_{\mathrm{D}}$$

where
$$S^{\alpha\beta} = \frac{\partial U^{\alpha}}{\partial x^{\beta}} + \frac{\partial U^{\beta}}{\partial x^{\alpha}} - \frac{2}{3} \nabla \cdot \mathbf{U} \delta^{\alpha\beta}$$
 mixing length
 $\nu_{\mathrm{T}} \sim \tau u^{2} \sim u\ell$
Eddy viscosity $\nu_{\mathrm{T}} = \frac{7}{15} \int \mathrm{d}\mathbf{k} \int_{-\infty}^{t} d\tau_{1} \ G(k;\tau,\tau_{1})Q(k;\tau,\tau_{1})$
Helicity-related
coefficient $\Gamma = \frac{1}{30} \int k^{-2} \mathrm{d}\mathbf{k} \int_{-\infty}^{t} d\tau_{1} \ G(k;\tau,\tau_{1}) \nabla H(k;\tau,\tau_{1})$

helicity inhomogeneity is essential

Eddy viscosity + Helicity model

Reynolds stress Yokoi & Yoshizawa (1993) Phys. Fluids A5, 464

$$\begin{aligned} \mathcal{R}_{\alpha\beta} &\equiv \left\langle u'_{\alpha} u'_{\beta} \right\rangle \\ &= \frac{2}{3} K \delta_{\alpha\beta} - \nu_{\mathrm{T}} \left(\frac{\partial U_{\alpha}}{\partial x_{\beta}} + \frac{\partial U_{\beta}}{\partial x_{\alpha}} \right) + \eta \left[\Omega_{\alpha} \frac{\partial H}{\partial x_{\beta}} + \Omega_{\beta} \frac{\partial H}{\partial x_{\alpha}} - \frac{2}{3} \delta_{\alpha\beta} \left(\mathbf{\Omega} \cdot \nabla \right) H \right] \\ &\nu_{\mathrm{T}} = C_{\nu} \tau K, \quad \tau = K/\epsilon, \quad \eta = C_{H} \tau (K^{3}/\epsilon^{2}) \end{aligned}$$

Turbulence quantities

 $K \equiv \frac{1}{2} \langle \mathbf{u}'^2 \rangle, \ \epsilon \equiv \nu \left\langle \frac{\partial u'_b}{\partial x_a} \frac{\partial u'_b}{\partial x_a} \right\rangle,$ Helicity turbulence model $H \equiv \langle \mathbf{u}' \cdot \boldsymbol{\omega}' \rangle, \ \epsilon_H \equiv 2\nu \left\langle \frac{\partial u'_b}{\partial x_a} \frac{\partial \omega'_b}{\partial x_a} \right\rangle$ 1.2 Velocity profiles in swirl \dot{U}^{z} I^{θ} 0.8 0.6 0.4 0.0 0.2 0.4 0.6 0.8 1.0 r/a23

Yokoi & Brandenburg (2016) Phys. Rev. E. 93, 033125

Rotation + Inhomogeneous Helicity (by forcing)

 $+z_{0}$ $+z_{0}$

Set-up of the turbulence and rotation $\boldsymbol{\omega}_{\text{F}}$ (left), the schematic spatial profile of the turbulent helicity $H (= \langle \mathbf{u}' \cdot \boldsymbol{\omega}' \rangle$) (center) and its derivative dH/dz (right).

Rotation

Inhomogeneous turbulent helicity

DNS set-up

$$\boldsymbol{\omega}_{\mathrm{F}} = (\omega_{\mathrm{F}}^{x}, \omega_{\mathrm{F}}^{y}, \omega_{\mathrm{F}}^{z}) = (0, \omega_{\mathrm{F}}, 0)$$
$$H(z) = H_{0} \sin(\pi z/z_{0})$$

Run	$k_{\rm f}/k_1$	Re	Co	$\eta/(u_{ m T} au^2)$
A	15	60	0.74	0.22
B1	5	150	2.6	0.27
B2	5	460	1.7	0.27
B3	5	980	1.6	0.51
C1	30	18	0.63	0.50
C2	30	80	0.55	0.03
C3	30	100	0.46	0.08
Summary of DNS results				

Global flow generation

Axial flow component U^{y} on the periphery of the domain

Turbulent helicity $\langle \mathbf{u}' \cdot \mathbf{\omega}' \rangle$ (top) and mean-flow helicity $\mathbf{U} \cdot 2\mathbf{\omega}_{\text{F}}$ (bottom)

Reynolds stress

$$\left\langle u^{\prime \alpha} u^{\prime \beta} \right\rangle_{\mathrm{D}} = -\nu_{\mathrm{T}} \mathcal{S}^{\alpha \beta} + \left[\Gamma^{\alpha} \left(\Omega^{\beta} + 2\omega_{\mathrm{F}}^{\beta} \right) + \Gamma^{\beta} \left(\Omega^{\alpha} + 2\omega_{\mathrm{F}}^{\alpha} \right) \right]_{\mathrm{D}}$$

Early stage

Developed stage

Reynolds stress $\langle u'^{y}u'^{z} \rangle$ (top),

helicity-effect term $(\nabla H)^z 2\omega_{F^y}$ (middle), and their correlation (bottom).

 $2\omega_{\rm F} \nabla H \tau^3$

Mean axial velocity U^{y} (top), turbulent helicity multiplied by rotation $2\omega_{\rm F}H$ (middle), and their correlation (bottom).

Physical origin

Reynolds stress
$$\mathcal{R}^{ij} \equiv \langle u'^i u'^j \rangle$$
 $V_{\rm M}^i = -\frac{\partial \mathcal{R}^{ij}}{\partial x^j} + \frac{\partial K}{\partial x^i}$ Vortexmotive force $\mathbf{V}_{\rm M} \equiv \langle \mathbf{u}' \times \boldsymbol{\omega}' \rangle$

$$\frac{\partial \mathbf{\Omega}}{\partial t} = \nabla \times (\mathbf{U} \times \mathbf{\Omega}) + \nabla \times \mathbf{V}_{\mathrm{M}} + \nu \nabla^{2} \mathbf{\Omega}$$
$$\mathbf{V}_{\mathrm{M}} = -D_{\Gamma} 2\boldsymbol{\omega}_{\mathrm{F}} - \nu_{\mathrm{T}} \nabla \times \mathbf{\Omega} \qquad D_{\Gamma} = \nabla \cdot \mathbf{\Gamma} \propto \nabla^{2} H$$
$$\bullet \quad \mathbf{\delta} \mathbf{U} \sim -(\nabla^{2} H) \mathbf{\Omega}_{*} \qquad \nabla^{2} H \simeq -\frac{\delta H}{\ell^{2}} = -\frac{\langle \mathbf{u}' \cdot \delta \boldsymbol{\omega}' \rangle}{\ell^{2}}$$

$$\Omega_{*} \qquad \delta U_{-} = \tau \langle \delta u' \times \delta \omega'_{-} \rangle \qquad \delta U_{+} = \tau \langle \delta u' \times \delta \omega'_{+} \rangle \\ \delta \omega'_{-} \qquad u' \qquad \delta H_{+} \\ \delta \omega'_{+} \qquad \delta M_{+} \\ \delta \Omega = \nabla \times \delta U \qquad \delta u' = \tau u' \times \Omega_{*}$$

Reynolds-stress budget

Inagaki, Yokoi & Hamba, Phys. Rev. Fluids, 2, 114605 (2017)

Angular-momentum transport in the solar convection zone

Angular momentum around the rotation axis

$$L = \Gamma r^2 \omega_{\rm F} + \Gamma r U^{\phi} \qquad \Gamma = \sin \theta$$
$$\frac{\partial}{\partial t} \rho L + \nabla \cdot (\rho \mathbf{F}_L) = 0$$

Vector flux of angular momentum \mathbf{F}_L

$$F_L^r = LU^r + r\Gamma \mathcal{R}^{r\phi}$$
$$F_L^\theta = LU^\theta + r\Gamma \mathcal{R}^{\theta\phi}$$

Miesch (2005) Liv. Rev. Sol. Phys. 2005-1

$$\delta \mathbf{U} \sim -(\nabla^2 H) \mathbf{\Omega}_*$$

Schematic helicity distribution

Helicity effect

$$\mathcal{R}_{H}^{r\phi} = +\frac{\partial H}{\partial r} \left(\frac{1}{r} \frac{\partial}{\partial r} r U^{\theta} - \frac{1}{r} \frac{\partial U^{r}}{\partial \theta} \right)$$
$$\mathcal{R}_{H}^{\theta\phi} = +\frac{1}{r} \frac{\partial H}{\partial \theta} \left(\frac{1}{r} \frac{\partial}{\partial r} r U^{\theta} - \frac{1}{r} \frac{\partial U^{r}}{\partial \theta} \right)$$

Helicity effect in the Reynolds stress Helicity Azimuthal Helicity Reynolds $C_{\eta}\tau\ell^2|(\nabla^2 H)\Omega_*|$ Helicity Gradient Vorticity effect stress Solar parameters $rac{\partial H}{\partial r}$ $\frac{\partial H}{\partial r}\overline{\Omega}^{\phi} \qquad \overline{u'^{r}u'^{\phi}}$ $\overline{\Omega}^{\phi}$ $\mathbf{u}\cdot\boldsymbol{\omega}$ $v \sim 200 \text{ m s}^{-1} = 2 \times 10^4 \text{ cm s}^{-1}$ $\ell \sim 200 \text{ Mm} = 2 \times 10^{10} \text{cm}$ $\tau \sim \ell/v \sim 10^6 \text{ s}$ $r\phi$ component $\left|\overline{u'^r u'^{\phi}}\right| \sim 1.2 \times 10^9$ $\left|\frac{\partial H}{\partial r}\overline{\Omega}^{\phi}\right| \sim 9.4 \times 10^{-15}$ $\begin{aligned} \tau \ell^2 \left| \frac{\partial H}{\partial r} \overline{\Omega}^{\phi} \right| \sim 10^{12} \longrightarrow 10^9 \\ \text{with } C_\eta = O(10^{-3}) \end{aligned}$ $\theta\phi$ component $\left|\overline{u^{\prime\theta}u^{\prime\phi}}\right| \sim 5.6 \times 10^8$ $\mathbf{u}\cdot \boldsymbol{\omega} - \overline{\mathbf{u}}\cdot \overline{\boldsymbol{\omega}}$ $1 \partial H$ $\overline{\Omega}^{\phi} \qquad \frac{1}{r} \frac{\partial H}{\partial \theta} \overline{\Omega}^{\phi} \qquad \overline{u'^{\theta} u'^{\phi}}$ $(\equiv H) \qquad \overline{r} \ \overline{\partial \theta}$ $\left|\frac{1}{r}\frac{\partial H}{\partial\theta}\overline{\Omega}^{\phi}\right| \sim 2.6 \times 10^{-15}$ (provided by Mark Miesch) $\tau \ell^2 \left| \frac{1}{r} \frac{\partial H}{\partial \theta} \overline{\Omega}^{\phi} \right| \sim 10^{11} \longrightarrow 10^8$ Magnitude same as the Reynolds stress

Large-scale flow generation by cross helicity

Reynolds and turbulent Maxwell stress

eddy viscosity inhomogeneous helicity $\langle \mathbf{u}'\mathbf{u}' - \mathbf{b}'\mathbf{b}' \rangle_{\mathrm{D}} = -\nu_{\mathrm{K}} \mathbf{S} + \nu_{\mathrm{M}} \mathbf{M} + \eta_{H} \Omega_{*} \nabla H + \cdots$ cross helicity D: deviatoric part \mathbf{S} : mean velocity strain \mathbf{M} : mean magnetic-field strain Ω_{*} : absolute mean vorticity (mean vorticity + rotation)

cf. $\langle \mathbf{u}' \times \mathbf{b}' \rangle = -\eta_{\mathrm{T}} \nabla \times \mathbf{B} + \gamma \nabla \times \mathbf{U} + \alpha \mathbf{B} + \cdots$

Turbulent cross helicity coupled with mean magneticfield strain may contribute to transport suppression and/ or global flow generation against the eddy-viscosity effect

Physical interpretation of large-scale flow generation by cross helicity

Velocity fluctuation induced by fluctuating Lorentz force

 $\delta \mathbf{u}' = \tau_J \mathbf{J} \times \mathbf{b}'$

Associated vorticity

$$\delta \boldsymbol{\omega}' = \nabla \times \delta \mathbf{u}'$$
$$= \tau_J \nabla \times (\mathbf{J} \times \mathbf{b}')$$
$$\simeq \tau_J (\mathbf{b}' \cdot \nabla) \mathbf{J}$$

Mean electric-current distribution

$$\delta \mathbf{\Omega} = \nabla \times \delta \mathbf{U} \propto - \langle \mathbf{u}' \cdot \mathbf{b}' \rangle \nabla \times \mathbf{J}$$

$$\sim + (\tau \tau_{J} / \ell^{2}) \langle \mathbf{u}' \cdot \mathbf{b}' \rangle \mathbf{J}$$

$$\delta \mathbf{u}' = \tau_{J} \mathbf{J} \times \mathbf{b}'$$

$$\delta \mathbf{U} = \tau \langle \mathbf{u}' \times \delta \mathbf{\omega}' \rangle$$

$$\delta \mathbf{U} = \tau \langle \mathbf{u}' \times \delta \mathbf{\omega}' \rangle$$

$$\langle \mathbf{u}' \cdot \mathbf{b}' \rangle \nabla \times \mathbf{J}$$

$$\delta \mathbf{\omega}' = \nabla \times \delta \mathbf{u}'$$

Large-scale flow induction due to cross helicity

 $\delta \mathbf{U} = \tau \langle \mathbf{u}' \times \delta \boldsymbol{\omega}' \rangle \propto \langle \mathbf{u}' \cdot \mathbf{b}' \rangle \nabla \times \mathbf{J} \quad \text{in the direction of } \nabla \times \mathbf{J}$

 $\delta \mathbf{\Omega} = \nabla \times \mathbf{U} = -\tau \tau_J \langle \mathbf{u}' \cdot \mathbf{b}' \rangle \nabla^2 \mathbf{J} \simeq + \frac{\tau \tau_J}{\ell^2} \langle \mathbf{u}' \cdot \mathbf{b}' \rangle \mathbf{J} \quad \text{ in the direction of } \mathbf{J}$

Summary

- Formulation for strongly non-linear and inhomogeneous/anisotropic turbulence
- Dynamo (or transport suppression) by cross helicity
- Flow generation (or momentum transport suppression) by kinetic helicity and cross helicity