Helicity2020 Online Talk 2020-12-11 (Friday) 13:00 – 13:30 UTC

Magnetic Helicity Flux across Solar Active Region Photospheres

Hemispheric Sign Preference in Solar Cycle 24

(Published in 2020, ApJ, 904, 6)

Sung-Hong Park¹

with

K. D. Leka^{1,2} and Kanya Kusano¹

¹ Institute for Space-Earth Environmental Research (ISEE), Nagoya University, Japan ² NorthWest Research Associates (NWRA), Boulder, CO, USA

NWRA

Since 1984

The Sun: Hemispheric Sign Preference

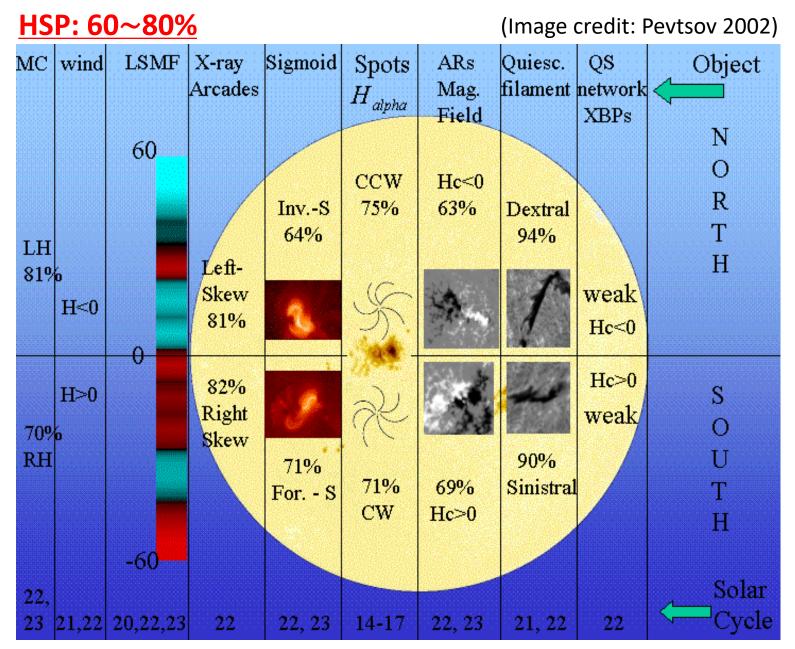
1. A tendency, but not a rule!

- Left-handed helical structures in the northern hemisphere
- Right-handed in the southern hemisphere

2. Observed in different kinds of physical quantities

- Magnetic/current/kinetic helicity
- Force-free-field parameter alpha
- Morphological properties (shape, chirality/handedness)

- ...


3. Various features in/from the magnetized solar atmosphere

- Sunspots, filaments, coronal loops, CMEs
- Quiet-Sun networks, bright points
- Solar winds, interplanetary CMEs

- ...

4. Independent of the solar cycle

Hemispheric Sign Preference (HSP) of Helicity (1)

Hemispheric Sign Preference (HSP) of Helicity (2)

(Table from Wang 2013)

HSP: 60~80%

Percentage of Features Obeying the Hemispheric Helicity/Chirality Rule

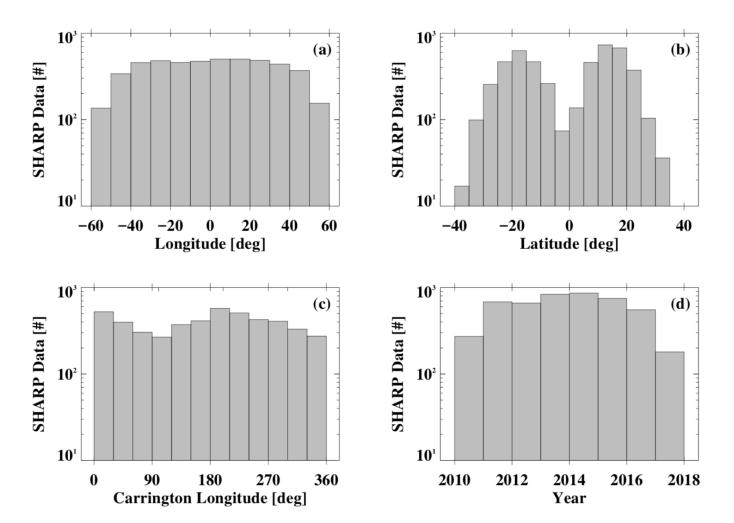
Reference	Type of Feature	Method	Sample Size	Hemispheric Bias f _{hem} (%)
Hale (1925)	H α sunspot whorls	Visual inspection	51	82
Richardson (1941)	$H\alpha$ sunspot whorls	Visual inspection	141	72
Pevtsov et al. (2003a)	$H\alpha$ sunspot whorls	Visual inspection	128	62
Rust & Kumar (1996)	X-ray sigmoids	Visual inspection	80 ^b	80
Canfield & Pevtsov (1999)	X-ray sigmoids	Visual inspection	182	64
Lim & Chae (2009)	X-ray sigmoids	Visual inspection	45	87
Martin et al. (1994)	Quiescent filaments	Visual (H α barbs)	73	82
Pevtsov et al. (2003b)	Quiescent filaments	Visual (H α barbs)	1436	83
Lim & Chae (2009)	Intermediate filaments	Visual (H α barbs)	45	84
Martin et al. (1994)	Active-region filaments	Visual (H α barbs)	31	55
Pevtsov et al. (2003b)	Active-region filaments	Visual (H α barbs)	838	76
Bernasconi et al. (2005)	All filaments	Automated detection (H α barbs)	658	68
Yeates et al. (2007)	All filaments	Visual (H α barbs)	123	82
Pevtsov et al. (1995)	Active regions	Vector (α_{best})	69	72
Abramenko et al. (1997)	Active regions	Vector (current helicity imbalance)	40	82.5
Bao & Zhang (1998)	Active regions	Vector (current helicity imbalance)	422	82
Longcope et al. (1998)	Active regions	Vector (α_{best})	203	65
Pevtsov et al. (2001)	Active regions	Vector (α_{best})	263	66
Hagino & Sakurai (2005)	Active regions	Vector (α_{av})	240	60
Zhang (2006)	Active regions	Vector (α_{best})	331	62

Proposed Physical Mechanisms for the HSP

• What is the source and where it happens?

(Refer to Bao+2002, and reference therein)

Source	Location	Northern Hemisphere	Southern Hemisphere
Differential	Photosphere	-	+
rotation	Convection zone	+	_
	Photosphere	+	-
Coriolis force	Convection zone	_	+
	Convection zone	+	-
α-effect	Overshoot region (tachocline)	_	+
Σ-effect	Convection zone	_	+
Surface flows (e.g., shear flows)	Photosphere	No preference?	No preference?

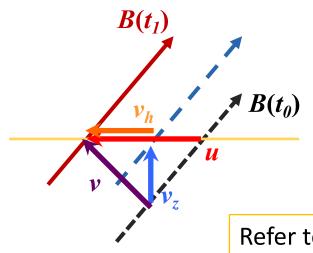

Motivation and Approach of This Study

- 1. A combination of various mechanisms may play together to produce the observed HSP.
- 2. Targeted scientific questions
 - What is the major/minor source for the HSP?
 - What will significantly obscure it?
- 3. The HSP in solar cycle 24
 - Observational data: SDO/HMI vector magnetograms (years 2010–2017)
 - Target: a large number of active region (AR) samples
 - Physical quantity: dH/dt
 - Method used: G_{θ} (Pariat+2005), DAVE4VM (Schuck 2008)

4. Dependence of the HSP with respect to various AR properties

Dataset of HMI Active Region Patches (HARPs)

- A total of 4,802 co-aligned pairs of HARP vector magnetograms at 12-minute separation observed at 00:36 UT and 00:48 UT each day from 2010 to 2017, and within ±60° from the central meridian
- Note that they are NOAA-numbered active regions (ARs) with sunspots.

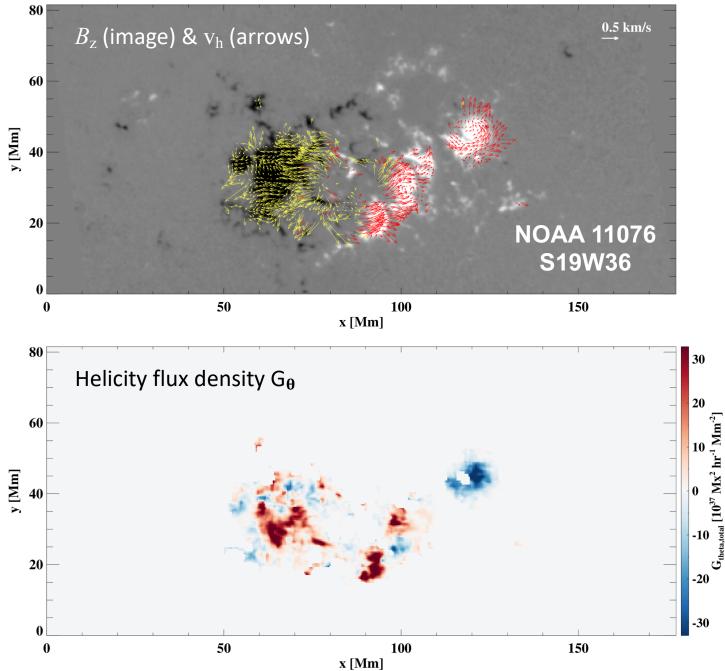


Magnetic Helicity Flux across the Photosphere

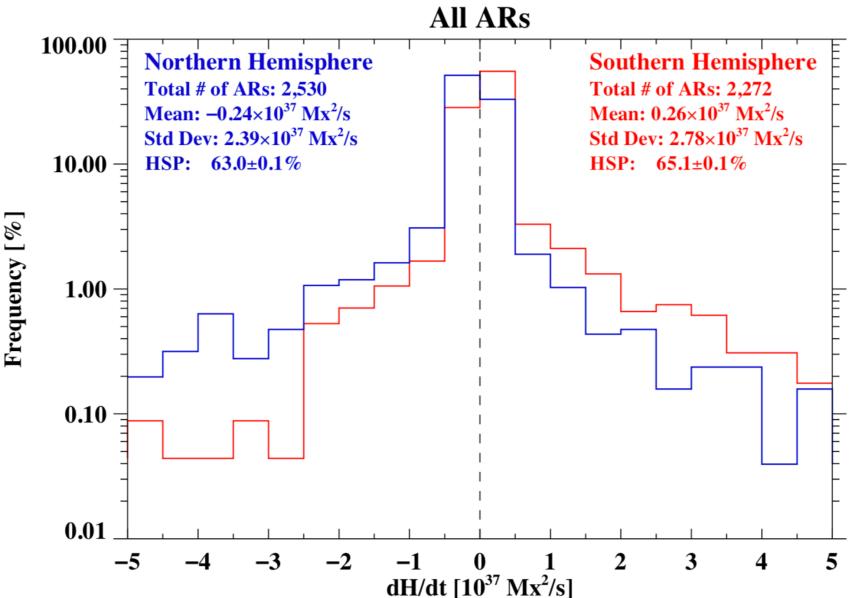
- Pariat+2005

$$\frac{\mathrm{d}H}{\mathrm{d}t} = \int_{S} G_{\theta} \,\mathrm{d}S$$
$$G_{\theta}(\mathbf{x},t) = -\frac{B_{z}}{2\pi} \int_{S'} \left(\frac{\mathbf{x} - \mathbf{x}'}{|\mathbf{x} - \mathbf{x}'|^{2}} \times [\mathbf{u} - \mathbf{u}'] \right)_{z} B'_{z} \,\mathrm{d}S'$$

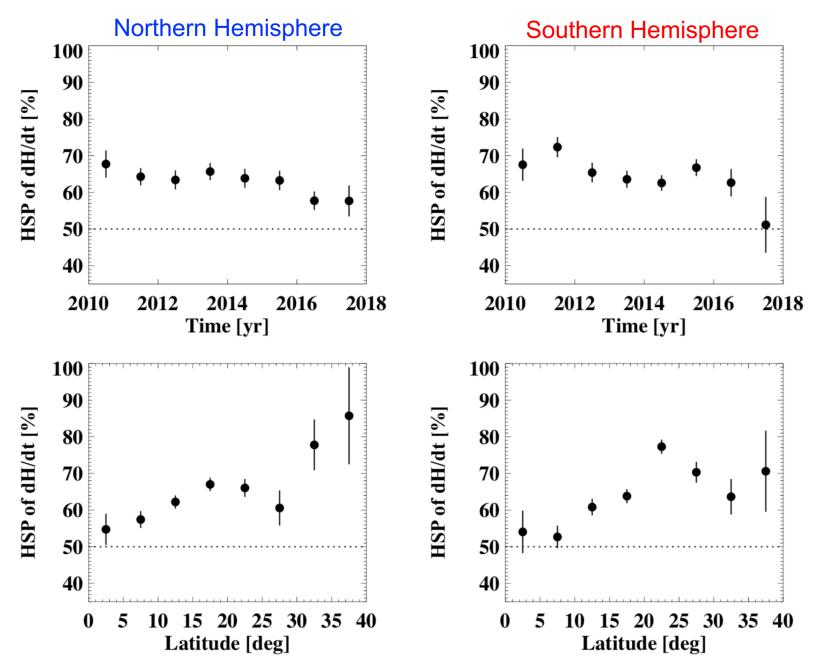
- Démoulin & Berger 2003

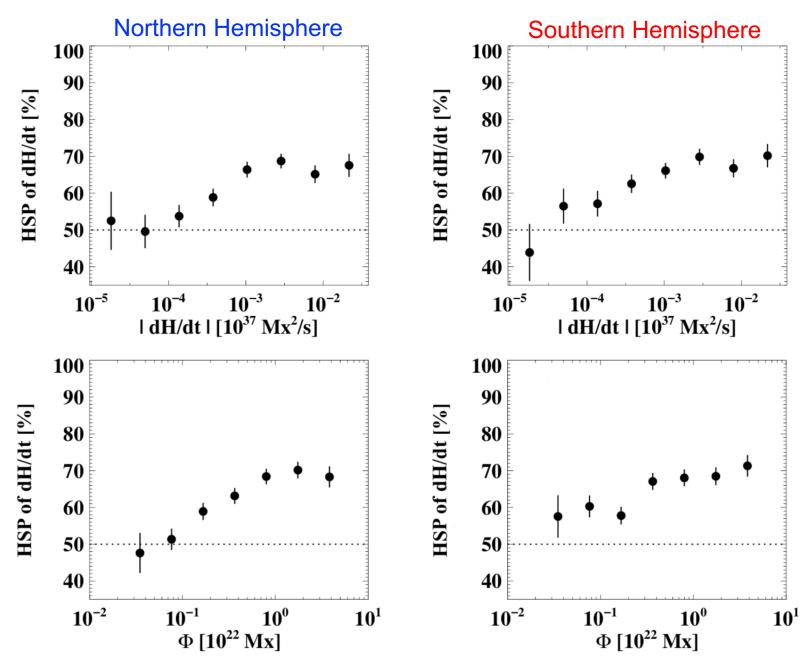

Magnetic field line footpoint velocity *u*

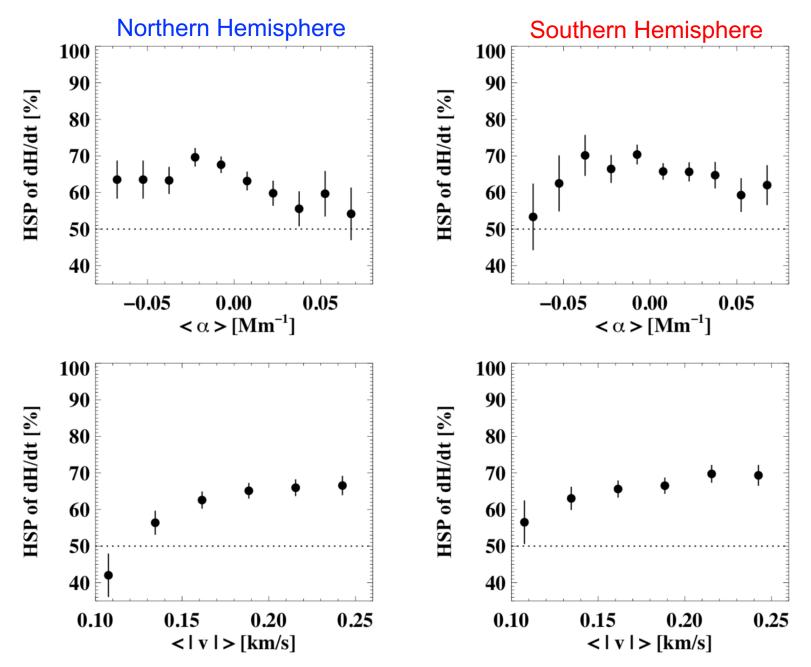
$$\mathbf{u} \equiv \mathbf{v}_h - v_z \frac{\mathbf{B}_h}{B_z}$$


• $v_h \& v_z$ from DAVE4VM (Schuck 2008)

Refer to Park+2020, ApJ, 904, 6

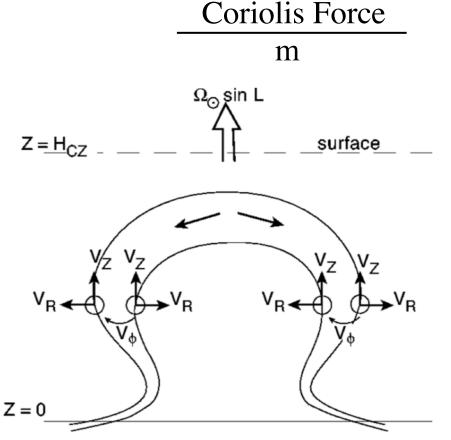

HARP 43 @ 2010-06-03T00:42:00.000


Results: (1) Relative Frequency Distribution of dH/dt


Results: (2) HSP vs Time (Top) & HSP vs Latitude (Bottom)

Results: (3) HSP vs |dH/dt| (Top) and HSP vs φ (Bottom)

Results: (4) HSP vs < α > (Top) and HSP vs < |v|> (Bottom)

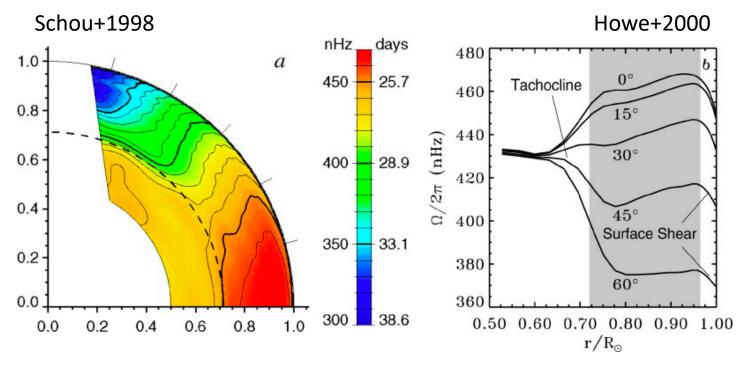

Summary of Observational Findings

1. The HSP of dH/dt

- 63% and 65% in the northern and southern hemispheres
- 2. The HSP increases from 50–60% up to 70–80% in cases where the ARs:
 - 1) appeared during the inclining phase of the solar cycle, or at higher latitudes;
 - 2) had larger values of |dH/dt|, the total unsigned magnetic flux, or the average plasma-flow speed;
 - 3) displayed the same sign between the average force-free parameter and that expected from the HSP (i.e., negative/positive in the northern/southern hemisphere).

Interpretations: (1) Coriolis Force in the Convection Zone (Including small-scale Σ-effect)

left-handed/right-handed in the northern/southern hemisphere



Wang+2013

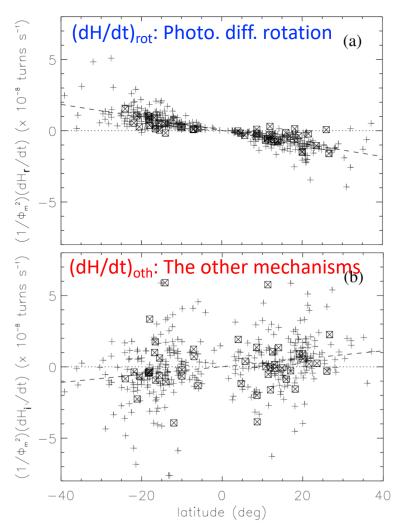
 $= 2 V_{R} \Omega_{\odot} \sin L$

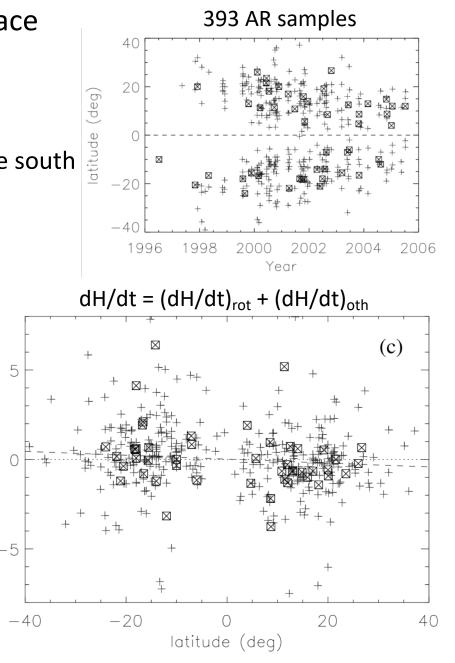
- The twist with the sign agreeing with the HSP will be more effectively induced by the Coriolis force in cases:
 - 1) Higher latitude
 - 2) Larger magnetic flux
 - → Larger magnetic pressure
 - \rightarrow Faster expansion
- Good agreement with our observational findings:
 - The HSP of dH/dt is positively correlated with heliographic latitude, Φ, and <|v|>, respectively.

Interpretations: (2) Differential Rotation in the CZ

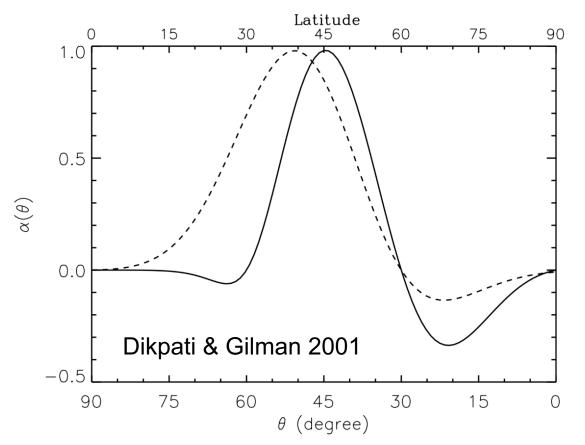
- A negative contribution to the HSP by a shearing action of differential rotation on a rising Ω-shaped flux tube with a tilt in the CZ.
 - 1) Larger differential rotation at a higher latitude (Schou+1998; Howe+2000)
 - Strong, large-scale magnetic fields at the base of the convection zone (Fan & Fang 2014,2016)
 - → More enhanced outward Reynolds stress
 - \rightarrow Larger differential rotation
- Disagreement with our observational findings

Interpretations: (3) Differential Rotation on the Surface


- The differential rotation on the surface will lead to the enhancement of the HSP:
 - Twisting the footpoints of emerged magnetic fields
 - Shearing a bipolar sunspot pair of an emerged Ω -shaped flux tube.
- The HSP can be strengthened by a larger surface differential rotation observed at a higher latitude (Shi & Xie 2014; Lamb 2017).
 - This agrees with our observations!


(3) Differential Rotation on the Surface

- LaBonte+2007
 - dH/dt for 393 ARs in cycle 23
 - $(dH/dt)_{oth} : (dH/dt)_{rot} = \sim 5.4 : 1$
 - HSP: 57% in the north and 60% in the south


S⁻¹)

 $(1/\Phi_m^2)(dH_m/dt)$ (x 10⁻⁸ turns

Interpretations: (4) α -effect at the base of the CZ

- The tachocline α-effect of flux-transport dynamos (e.g., Gilman & Charbonneau 1999; Dikpati & Gilman 2001):
 - Generating a twisted flux tube of which helicity sign follows the HSP
 - The tachocline α -effect is much larger at latitudes of $\sim 30^{\circ}$ -50°.
 - A higher HSP is expected at higher latitudes.
 - This agrees with our observations!

One-sentence Conclusion and Challenges

- Our observational findings support <u>the enhancement of the</u> <u>HSP</u> mainly by the Coriolis force acting on an expanding flux tube through the convection zone, as well as the differential rotation on the surface and the tachocline α-effect of a fluxtransport dynamo.
- Can state-of-the-art solar convective dynamo simulations help us?
 - To validate the observed HSP trends
 - To better understand the relative important of the different processes responsible for the HSP