





### INVERSE CASCADE OF ENERGY IN HELICAL TURBULENCE

Franck Plunian<sup>1</sup>, A. Teimurazov<sup>2</sup>, R. Stepanov<sup>2</sup> & M. K. Verma<sup>3</sup>

<sup>1</sup> Université Grenoble Alpes, ISTerre, Grenoble, France
<sup>2</sup> Institute of Continuous Media Mechanics, Perm, Russia
<sup>3</sup> Department of Physics, Indian Institute of Technology Kanpur, India

## 2D turbulence $\square$

Two inviscid quadratic invariants:

Energy 
$$E = \frac{1}{2} < |\boldsymbol{u}|^2 >$$
,  
Enstrophy  $Z = \frac{1}{2} < |\boldsymbol{\omega}|^2 >$ ,  $\boldsymbol{\omega} = \nabla \times \boldsymbol{u}$ 

Both are definite positive

→ Inverse cascade of energy
- Direct cascade of enstrophy

(Fjørtoft 1953, Kraichnan 1967)



## 2D turbulence $\square$



# 2D turbulence 3D turbulence in a slab





#### 2D turbulence $\square$ 3D turbulence in a slab $\square_{10^\circ}$ $\tilde{\varepsilon}_H = 25$ $k^{-5/3}$ $\tilde{\varepsilon}_H = 20$ $\tilde{\varepsilon}_H = 13$ Energy spectra $\tilde{\varepsilon}_H = 10$ 3D helical turbulence $\square$ $\tilde{\varepsilon}_H = 8$ $10^{-2}$ $\tilde{\varepsilon}_H = 7$ Velocity field $\begin{array}{c} \tilde{\varepsilon}_H = 5\\ \tilde{\varepsilon}_H = 1 \end{array}$ $10^{-4}$ E(k)0.15 Flux 0.10 $k^{-4.3}$ $10^{-6}$ 0.05 $\Pi_E(k)$ $10^{-8}$ -0.05-0.1010 50 100 5 $10^{-10}$ 50 100 5 10 0.5 k (Plunian et al., JFM 2020)

## In 3D turbulence



k

## Helical mode decomposition

#### **In spectral space**

 $\mathbf{u}(\mathbf{k}) = \mathbf{u}^{+}(\mathbf{k}) + \mathbf{u}^{-}(\mathbf{k})$   $= u^{+}(\mathbf{k})\mathbf{h}^{+}(\mathbf{k}) + u^{-}(\mathbf{k})\mathbf{h}^{-}(\mathbf{k})$ where  $u^{\pm}$  are complex scalars and  $\mathbf{h}^{\pm}$  are the eigenvectors of the curl operator satisfying  $\mathbf{i}\mathbf{k} \times \mathbf{h}^{\pm} = \pm |\mathbf{k}|\mathbf{h}^{\pm}$  [20,21]. F. Waleffe, Phys. Fluids 4, 350 (1992)  $E^{u}(\mathbf{k}) = \frac{1}{2}(|u^{+}(\mathbf{k})|^{2} + |u^{-}(\mathbf{k})|^{2})$  $H^{u}(\mathbf{k}) = \frac{k}{2}(|u^{+}(\mathbf{k})|^{2} - |u^{-}(\mathbf{k})|^{2})$ - Non helical state  $\Leftrightarrow |u^{+}(\mathbf{k})| = |u^{-}(\mathbf{k})|$ 

- Maximal Helical state  $\Leftrightarrow |u^+(\mathbf{k})| = 0$ , or  $|u^-(\mathbf{k})| = 0$ 

In a maximal helical state both energy and helicity are sign definite

#### **2D Turbulence**

#### **Maximal Helical State**

#### **Two inviscid quadratic invariants**

 $E(k) = \frac{1}{2} < |u^{2D}(\mathbf{k})|^2 >$ Energy  $E(k) = \frac{1}{2} < |u^+(k)|^2 >$ Energy Enstrophy  $Z(k) = \frac{k^2}{2} < |u^{2D}(k)|^2 >$  Helicity  $H(k) = \pm \frac{k}{2} < |u^{\pm}(k)|^2 >$ Both are sign definite - Inverse cascade of energy - Inverse cascade of energy - Direct cascade of enstrophy - Direct cascade of helicity E(k) E(k) L-5/3 L-5/3



## Solving the decimated Navier-Stokes equations



$$\partial_t \mathbf{u} = -(\mathbf{u} \cdot \nabla)\mathbf{u} + \nu \nabla^2 \mathbf{u} + \mu \nabla^{-2} \mathbf{u} + \mathbf{f},$$

#### **Separated injection scales of energy and helicity**

$$\mathbf{f}(\mathbf{k}) = c^{+}(\mathbf{k})u^{+}(\mathbf{k})\mathbf{h}^{+}(\mathbf{k}) + c^{-}(\mathbf{k})u^{-}(\mathbf{k})\mathbf{h}^{-}(\mathbf{k})$$
$$c^{\pm}(\mathbf{k}) = \frac{\varepsilon_{E}(\mathbf{k}) \pm \varepsilon_{H}(\mathbf{k})/k}{4E^{\pm}(\mathbf{k})}$$

Separated injection scales of energy and helicity





FIGURE 9. Energy spectra and fluxes (inset). The energy injection rate  $\varepsilon_E = 0.2$  is applied at  $k_E \in [9, 10]$ . From bottom to top of the energy spectra, the helicity injection rate  $\tilde{\varepsilon}_H = 25$ is applied at  $k_H \in [1, 10]$ ,  $[9, 10^2]$ , [5, 20], [1, 20],  $[1, 10^2]$  and  $[1, 10^2]$  again. For the last curve the viscosity is twice as small and the resolution is equal to  $1024^3$ .



FIGURE 2. Energy spectra and fluxes (inset). The energy injection rate  $\varepsilon_E = 0.2$  is applied at  $k_E \in [9, 10]$ . The helicity injection rate  $\tilde{\varepsilon}_H \in \{1; 5; 7; 8; 10; 13; 20; 25\}$  is applied at  $k_H \in [1, 10^2]$ .

Solving the full Navier-Stokes equations



FIGURE 3. Helicity spectra and fluxes (inset) for the same parameters as in figure 2.



FIGURE 4. Deviation to maximum chirality,  $1 - H^r(k)$ , for the same parameters as in figure 2.

Helical modes decomposition





## Helical modes decomposition



Online Advanced Study Program on Helicities in Astrophysics and Beyond



Online Advanced Study Program on Helicities in Astrophysics and Beyond



FIGURE 10. Snapshots of velocity (*a*) and helicity (*b*) on the three faces of the cubic resolution domain for  $\varepsilon_E = 0.2$  and  $\tilde{\varepsilon}_H = 25$ . In (*a*) the colours represent the isovalues of the velocity component perpendicular to each face, and the arrows the velocity field parallel to each face. In (*b*) the colours represent the isovalues of helicity.

## Conclusions

- Using 3D DNS we find a dual cascade, inverse for energy and direct for helicity.
- A necessary condition is that positive (or negative) helicity is injected in a sufficiently broad range of scales, on both sides of the energy injection range of scales.
- The triads responsible for the inverse cascade of energy are the triads of positive (resp. negative) helical modes, consistent with the homochiral framework.
- The turbulence is fully 3D

Reference: Plunian et al., JFM (2020)