Effects of P-noninvariance in the magnetic field generation of the celestial bodies

Semikoz V.B., Sokoloff D.D.

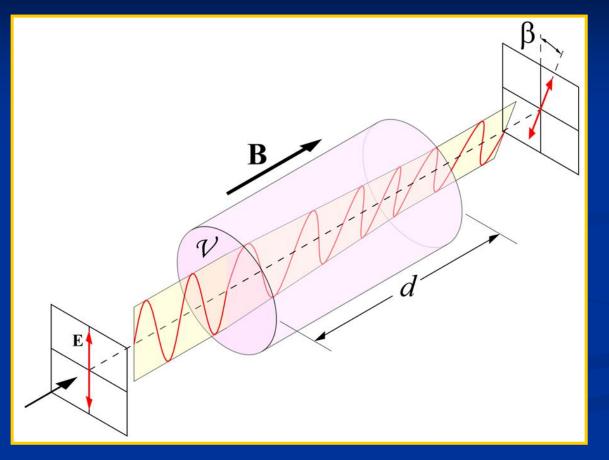
Pushkov Institute of Terrestrial Magnetism, Ionosphere and Radio Wave Propagation Russian Academy of Sciences

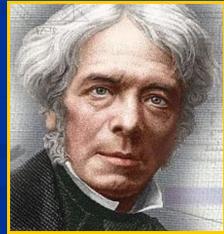
Magnetic Reynolds number

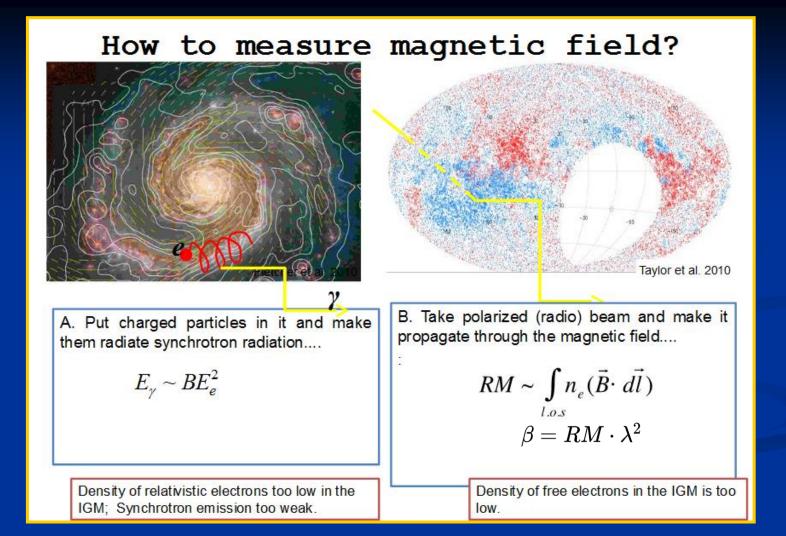
$R_m \sim 10-100$ - laboratory

 $R_m = 10^6 - 10^8$ - stars

Rotation of the polarization plane. The Faraday effect







Bounds on the cosmological magnetic fields (t_{now})

Upper bound:

1) $B < 10^{-9} - 10^{-10} G$ (Ruzmaikin & Sokoloff, 1977) from Faraday RM (subtracting the Milky Way contribution), $L >> L_{gal}$;

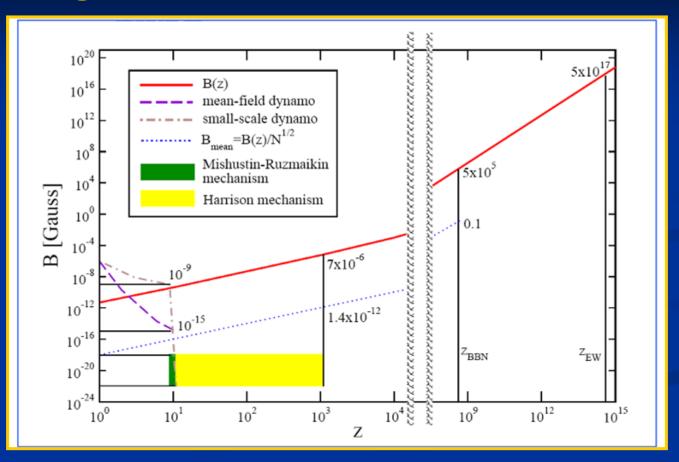
2)
$$B < 10^{-8} - 10^{-9} G$$
 (Barrow, Ferreira, Silk, 1997)
from CMB anisotropy + uniform fiels at the start t_{rec}

Lower bound:

 $B > 10^{-16} G$ if $\lambda_{\rm B} \ll D_{\rm e}$

 $B > 10^{-18} G$ if $\lambda_{\rm B} >> D_{\rm e}$ (Neronov, D. Semikoz, 2009), (Neronov, Vovk, 2010).

Magnetic field evolution after EWPT



The helicity parameter ${\cal C}$ in the excitation term $abla imes (lpha ec{f B})$ of the Faraday equation

 $\frac{\partial \vec{\mathbf{B}}}{\partial t} = \nabla \times \vec{v} \times \vec{\mathbf{B}} + \frac{1}{\sigma} \nabla^2 \vec{\mathbf{B}} + \nabla \times (\alpha \vec{\mathbf{B}})$ (*)

The standard MHD. P-invariance violation.

$$lpha = rac{ au_{corr}}{3} < ec u (
abla imes ec u) > \ Plpha P^{-1} \mapsto -lpha$$

- pseudoscalar

$$ec{v} = ec{\Omega} imes ec{r} + ec{u}$$
 | $< ec{u} > =$

$P\vec{\mathbf{B}}P^{-1}\mapsto \vec{\mathbf{B}}$

Equation (*) is P- even,

 $|\dot{j} = lpha B, \dot{j}||B|$

$$\frac{\partial \vec{\mathbf{B}}}{\partial t} = \nabla \times \vec{v} \times \vec{\mathbf{B}} + \frac{1}{\sigma} \nabla^2 \vec{\mathbf{B}} + \nabla \times (\alpha \vec{\mathbf{B}})$$

Anomalous MHD
$$\hbar = c = 1$$
 $\nabla \times \vec{\mathbf{B}} = \vec{J_{Ohm}} + \vec{J_{anom}}$ $\vec{J_{Ohm}} = \sigma(\vec{\mathbf{E}} + \vec{v} \times \vec{\mathbf{B}})$ $\vec{J_{Ohm}} = \sigma(\vec{\mathbf{E}} + \vec{v} \times \vec{\mathbf{B}})$ $\vec{J_{anom}} = \frac{e^2}{2\pi^2}\mu_5\vec{\mathbf{B}}$ Vector currents: $P\vec{J}P^{-1} \mapsto -\vec{J}$ $u = \frac{e^2\mu_5}{2\sigma\pi^2}$ - pseudoscalar, $P\alpha P^{-1} \mapsto -\alpha$ $\mu_5 = \frac{\mu_R - \mu_L}{2}$ $\frac{\partial \vec{\mathbf{B}}}{\partial t} = \nabla \times \vec{v} \times \vec{\mathbf{B}} + \frac{1}{\sigma} \nabla^2 \vec{\mathbf{B}} + \nabla \times (\alpha \vec{\mathbf{B}})$

Parity violation in electroweak interactions. Weinberg-Salam Standard Model

$$\alpha = \frac{\ln 2}{4\sqrt{2}\pi^2} \left(\frac{G_F T}{\lambda_{fluid}^{\nu}}\right) \left(\frac{n_{\nu} - n_{\overline{\nu}}}{n_{\nu}}\right) - scalar$$

$$n_{
u,ar{
u}} = rac{n_e}{2} ~~ n_e = 0.183 T^3, T >> m_e$$

CP symmetry is conserved in weak interactions

$$\left(rac{\partial ec{\mathbf{B}}}{\partial t} = rac{1}{\sigma}
abla^2 ec{\mathbf{B}} +
abla imes (lpha ec{\mathbf{B}})
ight)$$

CP-parity conservation in the MHD-equations accounting for weak interactions

 $(CP)(n_{\nu L} - n_{\overline{\nu}R})(CP)^{-1} \rightarrow -(n_{\nu L} - n_{\overline{\nu}R}),$

since $n_{\nu L} \leftrightarrow n_{\overline{\nu}R}$, or $\alpha \rightarrow -\alpha$.

As a result, CP – parity is conserved in the Faraday equation, for the magnetic field itself is CP - odd: (CP) **B** (CP)⁻¹ \rightarrow – **B**.

$$\overline{ rac{\partial ec{\mathbf{B}}}{\partial t} = rac{1}{\sigma}
abla^2 ec{\mathbf{B}} +
abla imes (lpha ec{\mathbf{B}})}$$

α^2 - dynamo in Early Universe

$$egin{aligned} B(t) &= B_0 exp\left(\int\limits_{t_0}^t rac{lpha^2(au)}{4\eta(au)}\,d au
ight)
ight) \left(T_0 &= 20 GeV << T_{EWPT} \simeq 100 GeV \ &egin{aligned} B(x) &= B_0 exp\left[25 \int_x^1 \left(rac{\xi_{
u_e}(x')}{0.07}
ight)^2 (x')^{10}\,dx'
ight]
ight) \left(egin{aligned} t[sec] &\simeq (T[MeV])^{-2}, \ for \ x &= T/T_0 \ll 1 \end{array}
ight) \end{aligned}$$

$$|\xi_{
u_e}|=\mu_{
u_e}/T\leq 0.07$$
 – Dolgov et al., 2002

$$rac{\partial ec{\mathbf{B}}}{\partial t} = rac{1}{\sigma}
abla^2 ec{\mathbf{B}} +
abla imes (lpha ec{\mathbf{B}})$$

Deutsche Bundesbank

intrage

Frankfurt am Main 1.Oktober 1993

1833г.

Magnetic helicity

The definition: $H(t) = \int d^3x \mathbf{A}(\mathbf{x}, t) \cdot \mathbf{B}(\mathbf{x}, t)$ is the magnetic helicity

(Gauss was first who calculated the knots number m, $H = 2m\Phi_1\Phi_2$).

The topology number *m* shows the *linkage and tangling* of magnetic force lines and this is a good integral of motion in MHD: it is conserved much better (decays much slower) than the magnetic energy in viscous matter. It is also *GAUGE-INVARIANT* under transformation $A(\mathbf{x},t) \rightarrow A(\mathbf{x},t) + \nabla \chi$ and supports the evolution of magnetic field
(via inverse cascade) to large-scale fields from the small-scale ones.

The change of helicity (in gauge $\mathbf{E} = -\partial \mathbf{A}/\partial t$) using also $\partial \mathbf{B}/\partial t = -\nabla \times \mathbf{E}$ is given by

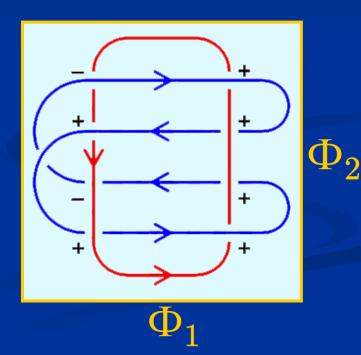
 $\frac{dH}{dt} = -2\int d^3x \mathbf{E} \cdot \mathbf{B},$

and in ideal plasma ($\sigma_{cond} = \infty$, standard MHD with Lorentz force only, $\mathbf{E} = -\mathbf{v} \times \mathbf{B}$) helicity is conserved.

The magnetic helicity is a topological invariant

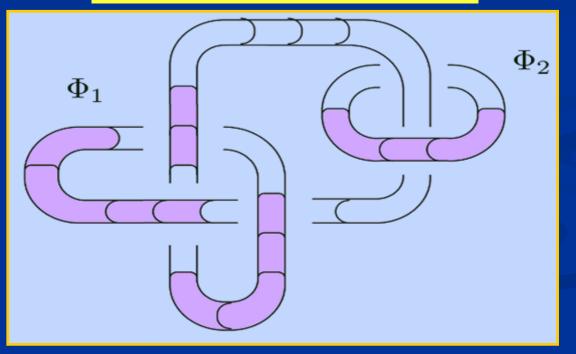
$$rac{dH}{dt} = -2\int (ec{E}\cdotec{B})dx^3 = -rac{2}{\sigma}\int (ec{j}ec{B})dx^3$$

 $egin{aligned} H &= const \ H &= m \Phi_1 \Phi_2 \ m &= \pm 1, \pm 2, \ldots \end{aligned}$



Hypermagnetic fluxes $\Phi = \int \mathbf{B}_{\mathbf{Y}} \cdot d\mathbf{S}$ and topology (linkage) number *m* (Chern-Simons analogue)

$$H = \int_{v} \mathrm{d}^{3} x (\mathbf{B}_{Y} \cdot \mathbf{Y}) = m \Phi_{1} \Phi_{2}$$



References:

• Large - scale magnetic field generation by alpha-effect driven by collective neutrino - plasma interaction V.B. Semikoz, D.D. Sokoloff. Dec 2003. 11 pp. Published inPhys.Rev.Lett. 92 (2004) 131301

• Large-scale cosmological magnetic fields and magnetic helicity V.B. Semikoz,D.D. Sokoloff. 2005. 16 pp. Published in Int.J.Mod.Phys. D 14 (2005) 1839-1854

• Is the baryon asymmetry of the Universe related to galactic magnetic fields? V.B. Semikoz, D.D. Sokoloff, J.W.F. Valle. May 2009. 4 pp. Published in Phys.Rev. D80 (2009) 083510

References:

• Flow of hypermagnetic helicity in the embryo of a new phase in the electroweak phase transition P.M. Akhmet'ev, V.B. Semikoz, D.D. Sokoloff. Feb 2010. 4 pp. Published in Pisma Zh.Eksp.Teor.Fiz. 91 (2010) 233

• Lepton asymmetries and primordial hypermagnetic helicity evolution V.B. Semikoz, D.D. Sokoloff, J.W.F. Valle. May 2012. 12 pp. Published in JCAP 1206 (2012) 008

• Generation of strong magnetic fields in a nascent neutron star accounting for the chiral magnetic effect Maxim Dvornikov, V.B. Semikoz, D.D. Sokoloff. Jan 22, 2020. 18 pp. e-Print: arXiv:2001.08139

Abelian anomaly in QED and conservation of the total helicity

Pseudovector current $J_5^{\mu} = \bar{\psi}_R \gamma^{\mu} \psi_R - \bar{\psi}_L \gamma^{\mu} \psi_L = \bar{\psi} \gamma^{\mu} \gamma^5 \psi$ is not conserved in electromagnetic fields. For massless fermions

$$\partial_{\mu}J_{5}^{\mu} = rac{2lpha_{em}}{\pi}\mathbf{E}\cdot\mathbf{B}
eq 0.$$

Integrating over volume, $V^{-1} \int d^3x(...)$ one gets

$$\frac{\mathrm{d}}{\mathrm{dt}}(n_R - n_L) = V^{-1} \left(\frac{2\alpha_{em}}{\pi}\right) \int d^3 x \mathbf{E} \cdot \mathbf{B} = -\frac{\alpha_{em}}{\pi} \frac{\mathrm{d}h}{\mathrm{dt}}$$

where $h = V^{-1} \int d^3x \mathbf{A} \cdot \mathbf{B}$ is the magnetic helicity density.

In hot (ultrarelativistic) plasma $n_{R,L}(t) = \mu_{R,L}(t)T^2/6$, $\mu_R - \mu_L = 2\mu_5(t)$, the TOTAL (particle+magnetic field) HELICITY DENSITY is CONSERVED,

$$\frac{\mathrm{d}}{\mathrm{dt}}\left(n_R - n_L + \frac{\alpha_{em}}{\pi}h\right) = 0.$$

Processes in the intergalactic medium (IGM)

1)
$$\gamma + \gamma_{\text{EBL}} \rightarrow e^+ + e^-$$

with a threshold of $\omega_{\rm EBL} = m_{\rm e}^2/E_{\gamma} = 0.25 \text{ eV}$ for $E_{\gamma} = 1 \text{ TeV}$, or $\lambda_{\rm EBL} > 5 \ \mu\text{m} > \lambda_{\rm Red} = 0.7 \ \mu\text{m} = 7000 \ \text{\AA}$;

2) The cascade, i.e. inverse Compton scattering (IC) on the relic photons taking into account the CMF for charged particles,

$$e^{\pm}(E) + \gamma_{\rm CMB} \rightarrow e^{\pm}(E') + \gamma',$$

where $\omega' \sim 10 \text{ GeV} - 100 \text{ GeV} >> \omega_{\text{CMB}} = 3 \cdot 10^{-4} \text{ eV}$ for $E = E_{\gamma}/2 = 0.5 \text{ TeV}$.

Photon and charged particles mean free paths in the intergalactic medium

$$D_{\gamma} = 1/(\sigma_{\gamma\gamma} n_{\rm EBL}) >> D_{\rm e} = 3m_{\rm e}^2/(4\sigma_{\rm T} U_{\rm CMB} E_{\rm e}),$$

where the mean free path of the original photon relative to the reaction $\gamma + \gamma_{EBL} \rightarrow e^+ + e^-$ is

$$D_{\gamma} = 80 \varkappa (10 \text{ TeV}) / E_{\gamma} \sim \text{Mpc},$$

and the free path of the charged particles e^{\pm} in the inverse Compton scattering (IC), $e^{\pm} + \gamma_{EBL} \rightarrow e^{\pm} + \gamma'$ is $D_{\rm e} = 10^{23} (10 \text{ TeV}) / E_{\rm e} \text{ cm} \sim 60 \text{ kpc}.$ for the electron (positron) energy $E_{\rm e} = E_{\gamma} / 2 = 5 \text{ TeV}.$

IGMF filling factor

