Kinematic dynamo in a tetrahedron of Fourier modes

Stepanov R.,

Institute of Continuous Media Mechanics, Perm, Russia

Plunian F.

Institut des Sciences de la Terre, Grenoble, France

What is the lowest possible dimension of dynamo model? What kind of helicity do we need for a dynamo?

R. Stepanov and F. Plunian, "Kinematic dynamo in a tetrahedron of Fourier modes," Fluid Dynamics Research, vol. 50, 2018

Dynamo problem and alpha-effect

Geodynamo

Dynamo experiment in Karlsruhe (1999)

Geophys. Astrophys. Fluid Dynamics, Vol. 42, pp. 151-161 Reprints available directly from the publisher Photocopying permitted by license only © 1988 Gordon and Breach, Science Publishers, Inc. Printed in Great Britain

Helicity is Unnecessary for Alpha Effect Dynamos, But it Helps

ANDREW D. GILBERT*, URIEL FRISCH and ANNICK POUQUET

CNRS, Observatoire de Nice, BP 139, 06003 Nice Cedex, France

(Received 30 June 1987; in final form 2 December 1987)

We present a two-scale analysis showing that helicity is not required for an alpha effect and associated dynamo instability, and that lack of parity-invariance in the velocity field is sufficient. We give an example of a non-helical velocity field which supports alpha effect dynamo action and demonstrate this effect numerically.

Zero helicity dynamo

Mirror symmetry should be broken at an individual scale (Fourier mode) of the flow

Helical decomposition

Induction equation

$$\left(\partial_t - \eta \nabla^2\right) \mathbf{b}(\mathbf{x}) = \nabla \times \left(\mathbf{u}(\mathbf{x}) \times \mathbf{b}(\mathbf{x})\right)$$

Fourier transform

$$\mathbf{u}(\mathbf{x}) = \sum_{\mathbf{k}} \mathbf{u}(\mathbf{k}) e^{i\mathbf{k}\cdot\mathbf{x}}, \qquad \mathbf{b}(\mathbf{x}) = \sum_{\mathbf{k}} \mathbf{b}(\mathbf{k}) e^{i\mathbf{k}\cdot\mathbf{x}}$$

Induction equation in terms of Fourier modes

$$\left(\partial_t + \eta k^2\right) \mathbf{b}(\mathbf{k}) = \sum_{\substack{\mathbf{p},\mathbf{q}\\\mathbf{k}+\mathbf{p}+\mathbf{q}=0}} i\mathbf{k} \times \left(\mathbf{u}^*(\mathbf{p}) \times \mathbf{b}^*(\mathbf{q})\right)$$

Decomposition in helical modes

$$i\mathbf{k} \times \mathbf{h}^{\pm} = \pm k\mathbf{h}^{\pm}$$

$$\mathbf{u}(\mathbf{k}) = u^{+}(\mathbf{k}) \mathbf{h}^{+}(\mathbf{k}) + u^{-}(\mathbf{k}) \mathbf{h}^{-}(\mathbf{k}),$$

$$\mathbf{b}(\mathbf{k}) = b^{+}(\mathbf{k}) \mathbf{h}^{+}(\mathbf{k}) + b^{-}(\mathbf{k}) \mathbf{h}^{-}(\mathbf{k}).$$

Waleffe (1992)

$$E(\mathbf{k}) = |u^{+}(\mathbf{k})|^{2} + |u^{-}(\mathbf{k})|^{2}$$
$$H(\mathbf{k}) = k \left(|u^{+}(\mathbf{k})|^{2} - |u^{-}(\mathbf{k})|^{2} \right)$$

Induction equation in terms of helical modes

$$\begin{pmatrix} d_t + \eta k^2 \end{pmatrix} b^{s_k}(\mathbf{k}) = -s_k k \sum_{\Delta_{\mathbf{k}\mathbf{p}\mathbf{q}}} \sum_{s_p, s_q = \pm 1} g_{s_k, s_p, s_q}(\mathbf{k}, \mathbf{p}, \mathbf{q}) \left(u^{s_p}(\mathbf{p}) b^{s_q}(\mathbf{q}) - b^{s_p}(\mathbf{p}) u^{s_q}(\mathbf{q}) \right)^*$$

$$g_{s_k, s_p, s_q}(\mathbf{k}, \mathbf{p}, \mathbf{q}) \equiv -\frac{1}{\mathbf{h}^{s_k}(\mathbf{k})^* \cdot \mathbf{h}^{s_k}(\mathbf{k})} (\mathbf{h}^{s_k}(\mathbf{k})^* \times \mathbf{h}^{s_p}(\mathbf{p})^*) \cdot \mathbf{h}^{s_q}(\mathbf{q})^*$$

Helical triads

Kinematic dynamo in a single triad

Full system wth $\eta=0$

$$\begin{aligned} d_{t}b_{k}^{+} &= -k \left[g_{+,+,+}(u_{p}^{+}b_{q}^{+} - b_{p}^{+}u_{q}^{+})^{*} + g_{+,-,-}(u_{p}^{-}b_{q}^{-} - b_{p}^{-}u_{q}^{-})^{*} + g_{+,+,-}(u_{p}^{+}b_{q}^{-} - b_{p}^{+}u_{q}^{-})^{*} + g_{+,-,+}(u_{p}^{-}b_{q}^{+} - b_{p}^{-}u_{q}^{+})^{*} \right] \\ d_{t}b_{p}^{+} &= -p \left[g_{+,+,+}(u_{q}^{+}b_{k}^{+} - b_{q}^{+}u_{k}^{+})^{*} + g_{-,+,-}(u_{q}^{-}b_{k}^{-} - b_{q}^{-}u_{k}^{-})^{*} + g_{-,+,+}(u_{q}^{+}b_{k}^{-} - b_{q}^{+}u_{k}^{-})^{*} + g_{+,+,-}(u_{q}^{-}b_{k}^{+} - b_{q}^{-}u_{k}^{+})^{*} \right] \\ d_{t}b_{q}^{+} &= -q \left[g_{+,+,+}(u_{k}^{+}b_{p}^{+} - b_{k}^{+}u_{p}^{+})^{*} + g_{-,-,+}(u_{k}^{-}b_{p}^{-} - b_{k}^{-}u_{p}^{-})^{*} + g_{+,-,+}(u_{k}^{+}b_{p}^{-} - b_{k}^{+}u_{p}^{-})^{*} + g_{-,+,+}(u_{k}^{-}b_{p}^{+} - b_{k}^{-}u_{p}^{+})^{*} \right] \\ d_{t}b_{k}^{-} &= +k \left[g_{-,+,+}(u_{p}^{+}b_{q}^{+} - b_{p}^{+}u_{q}^{+})^{*} + g_{-,-,-}(u_{p}^{-}b_{q}^{-} - b_{p}^{-}u_{q}^{-})^{*} + g_{-,+,-}(u_{p}^{+}b_{q}^{-} - b_{p}^{+}u_{q}^{-})^{*} + g_{-,-,+}(u_{p}^{-}b_{q}^{+} - b_{p}^{-}u_{q}^{+})^{*} \right] \\ d_{t}b_{p}^{-} &= +p \left[g_{+,-,+}(u_{q}^{+}b_{k}^{+} - b_{q}^{+}u_{k}^{+})^{*} + g_{-,-,-}(u_{q}^{-}b_{k}^{-} - b_{q}^{-}u_{k}^{-})^{*} + g_{-,-,-}(u_{q}^{-}b_{k}^{-} - b_{q}^{-}u_{k}^{-})^{*} + g_{-,-,-}(u_{q}^{-}b_{k}^{-} - b_{q}^{-}u_{k}^{-})^{*} + g_{-,-,-}(u_{q}^{-}b_{k}^{+} - b_{q}^{-}u_{k}^{+})^{*} \right] \\ d_{t}b_{q}^{-} &= +q \left[g_{+,+,-}(u_{k}^{+}b_{p}^{+} - b_{k}^{+}u_{p}^{+})^{*} + g_{-,-,-}(u_{k}^{-}b_{p}^{-} - b_{k}^{-}u_{p}^{-})^{*} + g_{+,-,-}(u_{k}^{+}b_{p}^{-} - b_{k}^{+}u_{p}^{-})^{*} + g_{-,+,-}(u_{k}^{-}b_{p}^{-} - b_{k}^{-}u_{p}^{-})^{*} \right] \\ d_{t}X^{-} &= AX^{*} \qquad X = \left(b_{k}^{+}, b_{p}^{+}, b_{q}^{+}, b_{k}^{-}, b_{p}^{-}, b_{q}^{-} \right) \right]$$

 $d_t^2 X = A A^* X$

Look for an exponential growth rate

$$\gamma = \Re\{a^{1/2}\} = \max_{i=1,6} \left(\Re\{a_i^{1/2}\} \right)$$

Solution

$$a = -\frac{Q_{kpq}^2}{4} \left(\left| \frac{u_k^+ - u_k^-}{k} \right|^2 + \left| \frac{u_p^+ - u_p^-}{p} \right|^2 + \left| \frac{u_q^+ - u_q^-}{q} \right|^2 \right) \implies a - real and a < 0 and a < 0 no dynamo on o dynamo dynamo o dynamo o dynamo dynamo o dynamo o dynamo dynamo o dynam$$

Kinematic dynamo in a single <u>helical</u> triad

$$u^{s_k}, b^{s_k}, u^{s_p}, b^{s_p}, u^{s_q}, b^{s_q}$$

 $b^{-s_k} = b^{-s_p} = b^{-s_q} = u^{-s_k} = u^{-s_p} = u^{-s_q} = 0.$

Decimated NS equation

Biferale etal, 2013 Linkmann etal, 2016

System of equations

$$\begin{aligned} d_t b^{s_k} &= -s_k k g_{s_k, s_p, s_q} (u^{s_p} b^{s_q} - b^{s_p} u^{s_q})^* \\ d_t b^{s_p} &= -s_p p g_{s_k, s_p, s_q} (u^{s_q} b^{s_k} - b^{s_q} u^{s_k})^* \\ d_t b^{s_q} &= -s_q q g_{s_k, s_p, s_q} (u^{s_k} b^{s_p} - b^{s_k} u^{s_p})^* \end{aligned}$$

Solution

Kinenatic dynamo in tetrahedron

Two scale flow $u_k^{\pm} \neq 0$ $u_p^{\pm} \neq 0$ k' (k, p, q), (k, p', q'), (k', p, q')(k', p', q), (k', p, q')

Solution

$$a = -\frac{Q_{kp'q'}^2}{4} \left| \frac{u_k^+ - u_k^-}{k} \right|^2 - \frac{Q_{pq'k'}^2}{4} \left| \frac{u_p^+ - u_p^-}{p} \right|^2 \pm \frac{Q_{kp'q'}Q_{pq'k'}}{2} \frac{|\sin\psi_{q'}|}{q'} \sqrt{\left(\frac{|u_k^+|^2 - |u_k^-|^2}{k}\right) \left(\frac{|u_p^+|^2 - |u_p^-|^2}{p}\right)}$$

 $\psi_{q'}$ - angle between planes of triads (**k**, **p'**, **q'**) and (**k'**, **p**, **q'**)

Necessary condition

$$H(\mathbf{k})H(\mathbf{p}) \neq 0$$

Maximum growth rate

$$q' \ll k \text{ and } q' \ll p$$

 $\psi_{q'} = \pi/2 \qquad \mathbf{q}' \perp (\mathbf{k}, \mathbf{p}, \mathbf{q})$

R. Stepanov and F. Plunian, Fluid dynamics Research, 2018

Roberts dynamo

Roberts flow (Type I)

$$u = \{\sin(y), \sin(x), \cos(x) - \cos(y)\}$$
$$H = 2(1 - \cos(x)\cos(y))$$

$$k = \{1, 0, 0\} \qquad u^+(k) = \frac{1}{2} \qquad u^-(k) = 0$$
$$p = \{0, 1, 0\} \qquad u^+(p) = -\frac{1}{2} \qquad u^-(p) = 0$$

Modified flow (Type II)

$$u = \{\sin(y), \sin(x), \cos(x) + \cos(y)\}$$
$$H = 0$$

$$k = \{1, 0, 0\} \qquad u^{+}(k) = \frac{1}{2} \qquad u^{-}(k) = 0$$
$$p = \{0, 1, 0\} \qquad u^{+}(p) = 0 \qquad u^{-}(p) = \frac{1}{2}$$

Time dependences of integral characteristics

 10^{-3}

 10^{-6}

 10^{-9}

 10^{-12}

 10^{-15}

 10^{-18}

Energy and helicity density spectra

Mode energy and helicity distributions in (kx, ky) plane and kz=1

Energy and helicity fluxes

Roberts 1

Roberts 2

Mode-to-mode transfer

Roberts 1

Roberts 2

Two acting triads: {k p' q'} and {p k' q}

$T^E \; (U_{-p} \; \stackrel{B_q}{\rightarrow} \; B_{k^{ \prime}} \;)$	$T^E \; (U_k \; \stackrel{B_q}{\rightarrow} B_{-p} \; ' \;)$	$T^E \; (U_k \stackrel{B_{-p}}{\to} B_{q^{\textbf{i}}} \;)$	$T^E \; (U_{-p} \; \stackrel{B_k{}^{\prime}}{\rightarrow} B_q{}^{\prime} \;)$
0.875557	0.875557	0.0347682	0.0347682
$T^E \;(B_q \; {}^{\hspace{1cm} U_{-p}} B_k \; {}^{\hspace{1cm} })$	$T^{E} (B_{q'} \xrightarrow{U_k} B_{-p'})$	$T^E \; (B_{-p} {}^{\scriptscriptstyle \prime} \; \stackrel{U_k}{\rightarrow} B_q {}^{\scriptscriptstyle \prime} \;)$	$T^E (B_{k^{\prime}} \stackrel{U_{-p}}{\rightarrow} B_{q^{\prime}})$
-0.175429	-0.175429	0.175429	0.175429
$T^{H}\left(B_{q}^{}\right) \xrightarrow{U_{-p}} B_{k^{}})$	$T^{H} (B_{q} {}^{\scriptscriptstyle I} \stackrel{U_{k}}{\rightarrow} B_{-p} {}^{\scriptscriptstyle I})$	$T^{H}\left(B_{-p}^{},\stackrel{U_{k}}{\rightarrow}B_{q^{}}\right)$	$T^{H}\left(B_{k'} \stackrel{U_{-p}}{\rightarrow} B_{q'}\right)$
0.420394	0.420394	-0.420394	-0.420394

$T^E \; (U_{-p} \; \stackrel{B_q}{\rightarrow} \; B_{k'} \;)$	$T^E \; (U_k \; \stackrel{B_q}{\rightarrow} \; B_{-p} \; , \;)$	$T^E \; (U_k \; \stackrel{B_{-p}}{\to} ' B_{q^{ '}} \;)$	$T^E \; (U_{-p} \; \stackrel{B_k}{\to} \; B_q \; {}^{\scriptscriptstyle \bullet} \;)$
1.14806	1.13987	0.0715908	0.0715743
$T^E \; (B_q {}^{\scriptscriptstyle I} \stackrel{U_{-p}}{\to} B_k {}^{\scriptscriptstyle I} \;)$	$T^E (B_q {}^{\scriptscriptstyle I} \stackrel{U_k}{\rightarrow} B_{-p} {}^{\scriptscriptstyle I})$	$T^{E} (B_{-p'} \stackrel{U_k}{\to} B_{q'})$	$T^E (B_{k'} \overset{U_{-p}}{\rightarrow} B_{q'})$
0.0450311	0.0447819	-0.0447819	-0.0450311
$T^{H} (B_{q'} \xrightarrow{U_{-p}} B_{k'})$	$T^{H} (B_{q} \text{'} \xrightarrow{U_{k}} B_{-p} \text{'})$	$T^{H} (B_{-p}{}^{,} \stackrel{U_k}{\rightarrow} B_{q}{}^{,})$	$T^{H} (B_{k'} \xrightarrow{U_{-p}} B_{q'})$
-0.538242	0.534141	-0.534141	0.538242

Scheme of mode interactions

Roberts 1

Roberts 2

U-to-B energy transfer
 B-to-B energy transfer
 Magnetic helicity transfer

Conclusions

• Helical decomposition is powerful tool to deal with the problems related to helicity

• We show that the simplest modes configuration leading to an unstable solution has the form of a tetrahedron

• We pick up main features of Roberts-like dynamos from analytical solution.

