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SOLARACTIVE-REGIONMAGNETIC FIELD –Observation &Measurement

– ARs at coronal temperatures appear as clusters of loops
– → anchored in regions of opposite magnetic polarity at the photosphere
– 3Dmagnetic field vector is NOT routinely measured
– (weak fields, high temperatures→weak Zeeman splitting, e.g., Cargill, 2009)
– Lack of measurements is compensated by:
– “EXTRAPOLATION” of the surface field into the corona
– →ApproximateB in the 3D corona based onmeasured photosphericB
– →Once coronalB is known physical conditions can be studied

– ARs in near-surface layers are characterized by a bipolar pattern
– → clusters of opposite magnetic polarity
– 3D photospheric magnetic field vector is routinely measured
– (strong field, low temperatures→ pronounced Zeeman effect)

AIA 211Å (T ≈ 2MK; AR corona)

HMI LOSmagnetic field (photosphere)

Credit: NASA/ESA/JAXA
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SOLARACTIVE-REGIONMAGNETIC FIELD – Importance ofmodeling

– Intrinsic to the emergence of magnetic field that interacts with the overlying field
active region field: FLARES and ERUPTIONS

– Energy that fuels solar eruptions can, by comparison, only stem from that previously
stored in the continuously evolving (coronal) magnetic field

– But energy is dissipative!→Need for a quantity uniquely related to topological changes
– MAGNETICHELICITY is (almost) conserved in (resistive) idealMHD

(Woltjer, 1958; Taylor, 1974; Pariat et al., 2015)
– Explanation for existence of plasma ejecta
→ to prevent infinite accumulation within the solar corona (Rust, 1994; Low, 1996) Coronal energy reservoir. Shown are the

contributions of thermal, gravitational,
kinetic andmagnetic energy density
in logarithmic scale (Forbes, 2000).
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SOLARACTIVE-REGIONMAGNETIC FIELD – Force-free approximation

The equations to be solved are:
∇ ·B = 0, (1)
∇×B = µ0J, (2)

J ×B = (∇×B)×B = 0. (3)

A vanishing Lorentz force (3) can be fulfilled
by ∇×B = 0 (→ J = 0, current-free, potential),
or ∇×B ‖ B (force-free).

The force-free equation, in combination with (2), can be rewritten as
µ0J = α�B (J and B aligned and proportional), (4)

Taking the divergence of (4) yields
B · ∇α� = 0 (α� constant along a given field line, (5)
B · ∇α� = 0, but may vary along individual field lines).

Ifα� = f(r)→NONLINEAR FORCE-FREE (NLFF) field.
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NLFFMODELING – A non-trivial task

Different methods to solve the set of equations in the NLFF case (1), (2) and (5) exist.
(See reviews by, e.g.,Wiegelmann (2008); Wiegelmann and Sakurai (2012).)

Successful application of NLFFmethods requires, at a minimum
(Schrijver et al., 2006; Metcalf et al., 2008; Schrijver et al., 2008; De Rosa et al., 2009; DeRosa et al., 2015)

– Realism: Good alignment of modeled field lines to observed coronal loops
– Consistency: Acceptable agreement of theα� -correspondence relation
– Quality: Low values of standard quality metrics (Schrijver et al., 2006;Wheatland et al., 2000)

and from a computational point of view, in addition:
– Largemodel volumes of high spatial resolution
– → accommodate the essential field line connectivity within a solar active region, as well the connectivity to its surrounding
– Accommodatemeasurement uncertainties
– → in particular that of the transversemagnetic field component (e.g., Wiegelmann and Inhester, 2010)
– Acquire force-free consistent model input
– → “preprocessing” (e.g., Wiegelmann et al., 2006; Fuhrmann et al., 2007, 2011)
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NLFFMODELING –Optimizationmethod

Weuse theOPTIMIZATIONmethod (Wiegelmann, 2004;Wiegelmann and Inhester, 2010)
to find an approximate solution to the NLFF problem, byminimizing

L =

∫
V wf
| (∇×B)×B|2

B2 + wd|∇ ·B|2 dV

+ ν

∫
S (B −Bobs) ·W · (B −Bobs) dS (6)

– Constrains (2) as quadratic form. (Fulfilled forwf > 0.).
– Constrains (1) as quadratic form. (Fulfilled forwd > 0.).
Evidently, when L is minimal, the force-free conditions are fulfilled.

– Constrains themodel field,B, at z = 0 using a diagonal error matrixW (x, y).
– →Diagonal elements are inversely proportional to the local measurement uncertainty.

After successful minimization of (6), we can study the approximated 3D coronalB, thus itsMAGNETICHELICITY.
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MAGNETICHELICITY – Relativemagnetic helicity

A gauge-invariant helicity (i.e., applicable for solar cases) can be defined as
(Berger and Field, 1984; Jensen and Chu, 1984; Finn and Antonsen, 1985) :

HV =

∫
V
(
A + Ap

)
· (B −Bp)dV, (7)

with respect to a reference (potential) field,Bp , with the particular propertyBn = Bp,n .

Possible decomposition ofHV (Berger, 2003) :
HV = HJ + 2HPJ, (8)
HJ =

∫
V
(
A −Ap

)
·
(
B −Bp

)
dV, (9)

HPJ =

∫
V Ap ·

(
B −Bp

)
dV. (10)

The helicity ratio, |HJ|/|HV |, is indicative for eruptivity!
→ in simulations (Pariat et al., 2017)
→ in NLFFmodel applications to solar observations
→ (James et al., 2018; Moraitis et al., 2019; Thalmann et al., 2019a).

→ (self-) helicity of the current- carrying field
→Bc = B −Bp

→ helicity of the volume-threading field
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∫
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A −Ap
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·
(
B −Bp

)
dV, (9)

HPJ =

∫
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(
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)
dV. (10)

The helicity ratio, |HJ|/|HV |, is indicative for eruptivity!
→ in simulations (Pariat et al., 2017)
→ in NLFFmodel applications to solar observations
→ (James et al., 2018; Moraitis et al., 2019; Thalmann et al., 2019a).

Time evolution of the helicity ratio |HJ|/|HV| for sevenparametric MHD simulations, either eruptive (warm colors)
or non-eruptive in nature (cold colors). Adapted from Fig. 7
of Pariat et al. (2017).
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FVHELICITY COMPUTATION – A non-trivial task

To determine the 3Dmagnetic vector potentialA one has to solve (for a given solenoidal vector magnetic field):
∇×B = ((((hhhh∇ (∇ ·A) − ∆A = µ0J, (11)

subject to the boundary requirement
n ·B = n · (∇×A) on∂V, (12)

and the additional constraint (Coulomb gauge)

∇ ·A = 0 ?)
. (13)

?)Alternatively, e.g., Az = 0 (“DeVore gauge”; DeVore, 2000) can be used (for a corresponding derivation ofA see Valori et al., 2012).
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FVHELICITY COMPUTATION – A non-trivial task
DecomposingB = Bc + Bp , the reference field is defined asBp = ∇φ, where

∆φ = 0, (16)
(n · ∇φ) |∂V = (n ·B) |∂V , (17)

such thatBp,n = Bn is satisfied.
Using the Coulomb gauge (e.g., Thalmann et al., 2011) one then has to solve:

∆Ap = 0, (18)
∇ ·Ap = 0, (19)

n ·
(
∇×Ap

)
|∂V = (n ·B) |∂V . (20)

→ Ap is designed to reproduce themagnetic flux on∂V.

∆Ac = −µ0J, (21)
∇ ·Ac = 0, (22)

(n×Ac) |∂V = 0. (23)
→ Ac reproduces the electric currents.
Then,∇×A = ∇× (Ap + Ac) = B andHV in (7) is gauge-invariant.
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FVHELICITY COMPUTATION – A non-trivial task
“Finite-volume” (FV) methods to solve the set of equations (18) – (23) exist.
(See review by, e.g., Valori et al. (2016).)

Successful application of FV helicity methods requires (at a minimum):
– High degree of solenoidality of the input fieldB
Reliability lost when energy error exceeds∼10% (for solar-like MHD test case; Valori et al., 2016).

– Realistic estimate of model-induced uncertainties (Thalmann et al., 2020)

Relative helicity as a function of error on energy from numerical
precision (Ediv ). Adapted from Fig. 8 of Valori et al. (2016).
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FVHELICITY COMPUTATION – A non-trivial task
“Finite-volume” (FV) methods to solve the set of equations (18) – (23) exist.
(See review by, e.g., Valori et al. (2016).)

Successful application of FV helicity methods requires (at a minimum):
– High degree of solenoidality of the input fieldB
Errors might be ignorable as long as energy error is below∼5% (for solar cases; Thalmann et al., 2019b).

– Realistic estimate of model-induced uncertainties (Thalmann et al., 2020)

Left: Nonsolenoidal contributions to the magnetic energy, computed following Valori et al. (2013), in NLFF solutions of lower (green) and high (blue)
solenoidal quality. Right: Corresponding total helicity, HV , derived using the FVCoulombmethod of Thalmann et al. (2011). Vertical dashed and
solid lines mark the GOES peak time of M- and X-class flares, respectively. Adapted from Figs. 2 and 3 of Thalmann et al. (2019b).
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FVHELICITY COMPUTATION – A non-trivial task
“Finite-volume” (FV) methods to solve the set of equations (18) – (23) exist.
(See review by, e.g., Valori et al. (2016).)

Successful application of FV helicity methods requires (at a minimum):
– High degree of solenoidality of the input fieldB
Errors might be ignorable as long as energy error is below∼5% (for solar cases; Thalmann et al., 2019b).

– Realistic estimate of model-induced uncertainties (Thalmann et al., 2020)

Helicity ratio, |HJ|/|HV|, as a function of time around twomajor X-classflares in AR 12673. The black solid line represents the mean value, the gray-
shaded area marks the spread (standard deviation). Vertical bars mark the
impulsive phases. Adapted from Fig. 5 of Thalmann et al. (2020).
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HELICITY RATIO – Potential for flare prediction

Pilot study of two exemplary ARs (Thalmann et al., 2019a):
– larger helicity ratio in CME-productive NOAA 11158 (|HJ|/|HV| & 0.1)
– pronounced flare-related responses

Time evolution of |HJ|/|HV| during disk passage of NOAA 11158 (CME-productive; left panel) and NOAA 12192 (CME-less; right panel).Vertical dashed/solid lines mark the peak time of M- and X-class flares, respectively. The horizontal dotted line marks a characteristic pre-flare
level of |HJ|/|HV| in CME- productive AR 11158. Adapted from Fig. 3 of Thalmann et al. (2019a).
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HELICITY RATIO – Potential for flare prediction

Follow-up study of 12 solar ARs seems to confirm the previously found trends (Gupta et al., in preparation).
– higher characteristic values in CME-productive ARs (|HJ|/|HV| & 0.1)
– lower characteristic values in CME-less ARs (|HJ|/|HV| . 0.1)

Helicity ratio of CME-productive (top row) and CME-less (bottom row) ARs, around the time of the largest respective flare produced. Vertical bars
mark the respective impulsive phases. Orange- and gray-shaded areas mark characteristic pre-flare levels of |HJ|/|HV|. (Gupta et al., in prep.)
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HELICITY RATIO –Open questions

Explanation of atypical CME-productive ARs
→ |HJ|/|HV| < 0.1 contrary to expectation
→ but also EF/EP . 0.2
→ joint interpretation of energy and helicity budgets appears essential

Helicity ratio (top) and energy ratio (bottom) of two exemplary CME-productive ARs, around the time of the largest respective flare produced. Ver-
tical bars mark the respective impulsive phases. Orange- and gray-shaded areas mark characteristic pre-flare levels of |HJ|/|HV|. (Gupta et al.,in prep.)
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HELICITY RATIO –Open questions

Need to understand the response to coronal dynamics (Green et al., in preparation)
→ flux emergence vs. small-scale dynamics vs. flare processes
→ only if understood helicity-based flare predictionmay be facilitated

Time evolution of |HJ|/|HV| (left) and EF/EP (right) during disk passage of NOAA 11158. Vertical lines mark major M- and X-class
flares. Gray bars mark times of activity not associated toM- or X-class flares. The horizontal dotted line marks a characteristic pre-flare
level of |HJ|/|HV| in CME- productive ARs. Adapted from Fig. 3 of Thalmann et al. (2019a) and Fig. 4a of Sun et al. (2012).
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SUMMARY

Understanding of coronal (eruptive) processes requires:
→ investigation of non-dissipative quantities such as (relative) magnetic helicity

(unique relation to changes of themagnetic field geometry)
→ in relation with dissipative ones as, e.g., magnetic energy

(seems to bemore sensitive to, e.g., flare size)

Success in modeling of coronal processes requires (among others):
→ high-quality modeling of the 3D (NLFF) coronal magnetic field

(in terms of force- and divergence freeness, as well as its realism)
→ reliable computation of the coronal relative helicity

Monitoring the relative helicity and energy for a large number of ARs and based longer time series
(with high temporal cadence)will allow it to:
→ better understand responses to coronal dynamics on different spatial scales
→ possibly aid flare forecasting schemes
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