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SOLAR ACTIVE-REGION MAGNETIC FIELD - Observation & Measurement

AIA211A (T ~ 2MK; AR corona)

- ARs at coronal temperatures appear as clusters of loops

— anchored in regions of opposite magnetic polarity at the photosphere
- 3D magnetic field vector is NOT routinely measured

(weak fields, high temperatures — weak Zeeman splitting, e.g., Cargill, 2009)
- Lack of measurements is compensated by:

“EXTRAPOLATION” of the surface field into the corona

— Approximate B in the 3D corona based on measured photospheric B

— Once coronal B is known physical conditions can be studied

HMI LOS magnetic field (photosphere)
- ARsin near-surface layers are characterized by a bipolar pattern
—» clusters of opposite magnetic polarity
- 3D photospheric magnetic field vector is routinely measured

(strong field, low temperatures — pronounced Zeeman effect)

Credit: NASA/ESA/JAXA
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SOLAR ACTIVE-REGION MAGNETIC FIELD - Importance of modeling

- Intrinsic to the emergence of magnetic field that interacts with the overlying field
active region field: FLARES and ERUPTIONS

- Energy that fuels solar eruptions can, by comparison, only stem from that previously
stored in the continuously evolving (coronal) magnetic field

But energy is dissipative! — Need for a quantity uniquely related to topological changes

MAGNETIC HELICITY is (almost) conserved in (resistive) ideal MHD
(Woltjer, 1958; Taylor, 1974; Pariat et al., 2015)
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Explanation for existence of plasma ejecta Coronal energy reservoir. Shown are the
— to prevent infinite accumulation within the solar corona (Rust, 1994; Low, 1996) contributions of thermal, gravitational,

kinetic and magnetic energy density
in logarithmic scale (Forbes, 2000).
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SOLAR ACTIVE-REGION MAGNETIC FIELD - Force-free approximation

The equations to be solved are:

v-B = 0, (1)
V x B wodJ, (2
J B=(VxXxB)x B 0. (3)
A vanishing Lorentz force (3) can be fulfilled
by VxB = 0
or V x B

( — J = 0, current-free, potential),
(force-free).

The force-free equation, in combination with (2), can be rewritten as

rod

= agB
Taking the divergence of (4) yields

(J and B aligned and proportional),

(4
B-Vag = 0
If g = f(r)

(g constant along a given field line,

but may vary along individual field lines)
» NONLINEAR FORCE-FREE (NLFF) field.
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NLFF MODELING - A non-trivial task

Different methods to solve the set of equations in the NLFF case (1), (2) and (5) exist.
(See reviews by, e.g., Wiegelmann (2008); Wiegelmann and Sakurai (2012).)

Successful application of NLFF methods requires, at a minimum
(Schrijver et al., 2006; Metcalf et al., 2008; Schrijver et al., 2008; De Rosa et al., 2009; DeRosa et al., 2015)

~ Realism: Good alignment of modeled field lines to observed coronal loops
- Consistency: Acceptable agreement of the agr-correspondence relation

Quality: Low values of standard quality metrics (Schrijver et al., 2006; Wheatland et al., 2000)

and from a computational point of view, in addition:
Large model volumes of high spatial resolution

— accommodate the essential field line connectivity within a solar active region, as well the connectivity to its surrounding
- Accommodate measurement uncertainties

— in particular that of the transverse magnetic field component (e.g., Wiegelmann and Inhester, 2010)

Acquire force-free consistent model input

— “preprocessing” (e.g., Wiegelmann et al., 2006; Fuhrmann et al., 2007, 2011)
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NLFF MODELING - Optimization method

We use the OPTIMIZATION method (Wiegelmann, 2004; Wiegelmann and Inhester, 2010)
to find an approximate solution to the NLFF problem, by minimizing

[(V x B) x B|? 2
L = /wf7+wd\V-B| dv
B2
+ v (B = Bon) W (B = Baw) ds
Constrains (2) as quadratic form. (Fulfilled forwg > 0).
Constrains (1) as quadratic form. (Fulfilled forwgq > 0.).
Evidently, when L is minimal, the force-free conditions are fulfilled.
Constrains the model field, B, at z = 0 using a diagonal error matrix W (x, y).

— Diagonal elements are inversely proportional to the local measurement uncertainty.

After successful minimization of (6), we can study the approximated 3D coronal B, thus its MAGNETIC HELICITY.

=} F
J. K. Thalmann Magnetic helicity as indicator for solar eruptivity

September 29,2020



MAGNETIC HELICITY - Relative magnetic helicity

A gauge-invariant helicity (i.e., applicable for solar cases) can be defined as
(Berger and Field, 1984; Jensen and Chu, 1984; Finn and Antonsen, 1985) :

J.K.Thalmann
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Possible decomposition of Hy, (Berger, 2003) :

Hy +2Hpg,

8)
/V (A (B

Bp) dV,
/\v/A“'

(9)
(B )

Ap)

(10)

Magnetic helicity as indicator for solar eruptivity

/v (At Ap)-(B— Bp)dv,

with respect to a reference (potential) field, By, with the particular property Bn = Bp n.

helicity of the current- carrying field
B - Bp

— helicity of the volume-threading field
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MAGNETIC HELICITY - Relative magnetic helicity

A gauge-invariant helicity (i.e., applicable for solar cases) can be defined as
(Berger and Field, 1984; Jensen and Chu, 1984; Finn and Antonsen, 1985) :

Hy = /V(A+Ap)-(Bpr)dV, @)

with respect to a reference (potential) field, By, with the particular property Bn = Bp n.

Possible decomposition of Hy, (Berger, 2003):
Hy Hy + 2Hpy, (8)
H [ (A - Ap) - (B - Bp) dv 9)
J /\ I
Hpy = /‘/Ap-(B—Bp)dV. (10)
The helicity ratio, [Hy | /|Hy, |, is indicative for eruptivity! 50 100 150 200
Time
— insimulations (Pariat et al., 2017) Time evolution of the helicity ratio |Hy | / |Hy, | for seven
N — . parametric MHD simulations, either eruptive (warm colors)
— inNLFF model applications to solar observations or non-eruptive in nature (cold colors). Adapted from Fig. 7
(James et al., 2018; Moraitis et al., 2019; Thalmann et al., 2019a). of Pariat et al. (2017).
=} F = E E

J. K. Thalmann Magnetic helicity as indicator for solar eruptivity September 29,2020



FV HELICITY COMPUTATION - A non-trivial task

VXxB="
subject to the boundary requirement

To determine the 3D magnetic vector potential A one has to solve (for a given solenoidal vector magnetic field):
—AJ — AA

nod,

n-B=n-(VxA)
and the additional constraint (Coulomb gauge)

ondV,

V-A=0".

*)Alternative(y, eg.,Az = 0("DeVore gauge”; DeVore, 2000) can be used (for a corresponding derivation of A see Valori et al., 2012).
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FV HELICITY COMPUTATION - A non-trivial task

Decomposing B = B + By, the reference field is defined as B, = V ¢, where

Aé = O, (16)
(n-Vo)lav (n - B)lav, (17)

suchthat By, n = Bp is satisfied.

Using the Coulomb gauge (e.g., Thalmann et al,, 2011) one then has to solve:

AA, = O, (18)
V-A, = 0, (19)
n-(VxAp)loy = (n B)lay. (20)

» Ap is designed to reproduce the magnetic flux on V.
AA. = —pgJ, (21)
V-Ac = 0, (22)
(nx Adlogy = O (23)

— A reproduces the electric currents.

Then,V x A =V x (Ap + Ac) = BandHy, in(7)is gauge-invariant.
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FV HELICITY COMPUTATION - A non-trivial task

“Finite-volume” (FV) methods to solve the set of equations (18) - (23) exist.
(See review by, e.g., Valori et al. (2016).)

Successful application of FV helicity methods requires (at a minimum):

- High degree of solenoidality of the input field B
Reliability lost when energy error exceeds ~ 10% (for solar-like MHD test case; Valori et al., 2016).
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Relative helicity as a function of error on energy from numerical
precision (E 33+, ). Adapted from Fig. 8 of Valori et al. (2016).
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FV HELICITY COMPUTATION - A non-trivial task

“Finite-volume” (FV) methods to solve the set of equations (18) - (23) exist.
(See review by, e.g., Valori et al. (2016).)

Successful application of FV helicity methods requires (at a minimum):

- High degree of solenoidality of the input field B
Errors might be ignorable as long as energy error is below ~5% (for solar cases; Thalmann et al., 2019b).
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Left: Nonsolenoidal contributions to the magnetic energy, computed following Valori et al. (2013), in NLFF solutions of lower (green) and high (blue)
solenoidal quality. Right: Corresponding total helicity, Hy, derived using the FVCoulomb method of Thalmann et al. (2011). Vertical dashed and
solid lines mark the GOES peak time of M- and X-class flares, respectively. Adapted from Figs. 2 and 3 of Thalmann et al. (2019b).

J. K. Thalmann Magnetic helicity as indicator for solar eruptivity September 29,2020



FV HELICITY COMPUTATION - A non-trivial task

“Finite-volume” (FV) methods to solve the set of equations (18) - (23) exist.
(See review by, e.g., Valori et al. (2016).)

Successful application of FV helicity methods requires (at a minimum):

High degree of solenoidality of the input field B
Errors might be ignorable as long as energy error is below ~5% (for solar cases; Thalmann et al., 2019b).

- Realistic estimate of model-induced uncertainties (Thalmann et al., 2020)

0.25
Remember: 0.20
We use the OPTIMIZATION method (Wiegelmann, 2004; Wiegelmann and ihester, 2010)
tofind an approximate solution to the NLFF problem, by minimizing
= 015
r  |(V x B) x B|2 2 E
L / W+ wa|V - BPav >
g (6 = 0.10
v [ (B = Bow) - W+ (B = Bow) ds
s
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Helicity ratio, |Hy | / |Hy, |, as a function of time around two major X-class
flares in AR 12673. The black solid line represents the mean value, the gray-
shaded area marks the spread (standard deviation). Vertical bars mark the
impulsive phases. Adapted from Fig. 5 of Thalmann et al. (2020).
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HELICITY RATIO - Potential for flare prediction

Pilot study of two exemplary ARs (Thalmann et al., 2019a):

- larger helicity ratio in CME-productive NOAA 11158 (|Hz |/ |Hy,| = 0.1)
Prolific in major eruptive (CME-associated) flares Prolific in major confined (CME-less) flares
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Time evolutionof |[Hy | /| Hy, | during disk passage of NOAA 11158 (CME-productive; left panel) and NOAA 12192 (CME-less; right panel).
Vertical dashed/solid lines mark the peak time of M- and X-class flares, respectively. The horizontal dotted line marks a characteristic pre-flare
level of |Hy | / |[Hy, | in CME- productive AR 11158. Adapted from Fig. 3 of Thalmann et al. (2019a).
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HELICITY RATIO - Potential for flare prediction

Pilot study of two exemplary ARs (Thalmann et al., 2019a):

- larger helicity ratio in CME-productive NOAA 11158 (|Hy | /|Hy,| Z 0.1)

- pronounced flare-related responses

Prolific in major eruptive (CME-associated) flares Prolific in major confined (CME-|ess) flares
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Start Time (11-Feb-11 18:59:00) Start Time (20-Oct-14 06:59:00)

Time evolutionof |[Hy | /| Hy, | during disk passage of NOAA 11158 (CME-productive; left panel) and NOAA 12192 (CME-less; right panel).
Vertical dashed/solid lines mark the peak time of M- and X-class flares, respectively. The horizontal dotted line marks a characteristic pre-flare
level of |Hy | / |[Hy, | in CME- productive AR 11158. Adapted from Fig. 3 of Thalmann et al. (2019a).
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HELICITY RATIO - Potential for flare prediction

Follow-up study of 12 solar ARs seems to confirm the previously found trends (Gupta et al., in preparation).
- higher characteristic values in CME-productive ARs (|Hy | /|Hy,| 2 0.1)

- lower characteristic values in CME-less ARs (|Hy | /|Hy,| < 0.1)
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Helicity ratio of CME-productive (top row) and CME-less (bottom row) ARs, around the time of the largest respective flare produced. Vertical bars
mark the respective impulsive phases. Orange- and gray-shaded areas mark characteristic pre-flare levels of [Hy | / [Hy, |- (Gupta et al., in prep.)
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HELICITY RATIO - Open questions

Explanation of atypical CME-productive ARs

— |Hy|/IHy | < 0.1contrary to expectation

butalsoEp /Ep < 0.2

— jointinterpretation of energy and helicity budgets appears essential
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Helicity ratio (top) and energy ratio (bottom) of two exemplary CME-productive ARs, around the time of the largest respective flare produced. Ver-
tical bars mark the respective impulsive phases. Orange- and gray-shaded areas mark characteristic pre-flare levels of |[Hy | / |Hy, |. (Gupta et al.,
inprep.)
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HELICITY RATIO - Open questions

Need to understand the response to coronal dynamics (Green et al., in preparation)

— flux emergence vs. small-scale dynamics vs. flare processes

— only if understood helicity-based flare prediction may be facilitated

0.5 magneticflux ! coronal activity 0.30 i
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12-Feb  13-Feb  14-Feb  15Feb  16-Feb 12Feb  13-Feb  14-Feb  15Feb  16-Feb

Timeevolution of [Hy | / |Hy, | (left) and Ew / Ep (right) during disk passage of NOAA 11158. Vertical lines mark major M- and X-class
flares. Gray bars mark times of activity not associated to M- or X-class flares. The horizontal dotted line marks a characteristic pre-flare
levelof [Hy |/ |Hy, | in CME- productive ARs. Adapted from Fig. 3 of Thalmann et al. (2019a) and Fig. 4a of Sun et al. (2012).
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SUMMARY

of coronal (eruptive) processes requires:

— investigation of non-dissipative quantities such as (relative) magnetic helicity
(unique relation to changes of the magnetic field geometry)

— inrelation with dissipative ones as, e.g., magnetic energy
(seems to be more sensitive to, e.g., flare size)

in modeling of coronal processes requires (among others):

— high-quality modeling of the 3D (NLFF) coronal magnetic field
(in terms of force- and divergence freeness, as well as its realism)

— reliable computation of the coronal relative helicity

the relative helicity and energy for a large number of ARs and based longer time series
(with high temporal cadence) will allow it to:

— better understand responses to coronal dynamics on different spatial scales

— possibly aid flare forecasting schemes
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