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Rotation-Activity Relation

What does the dynamo do ?

What does the corona do ?

Importance of  helicity ?
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Rotation-Activity  
Relation II

Lehtinen et al. 2020 
Nature Astronomy

MS stars and Giants fall 
on top of  each other

Rossby number the 
crucial parameter

Convective turbulence 
important for Dynamo
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Activity Cycles 

Brandenburg, Saar & Turpin, 1998
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Active branch under debate 
(e.g. Distefano et al. 2017, Brandenburg et al. 2017, 

Reinhold et al. 2017, Boro Saikia et al. 2018)

I

A

Sun

Inactive branch prevails 
(e.g. Olperts et al. 2018)

Strong constrains  
on the solar dynamo

Prot/Pcyl ~ Co0.5         Pcyl ~ Co-1.5

Chromospheric acitvity
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Solar Activity Stellar Activity

• Modelling of  dynamos, sunspots and the corona 
• High-resolution and long-term observation

• Rotational dependence of  cycles & X-rays  
• Size and distribution of  star spots 
• Dependence on stellar parameters

experience

constraints
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The glue that connects 
dynamos and coronae  
of  the Sun and stars

Magnetic Helicity
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Magnetic helicity 
+ catastr. quenching

Alpha-effect

Kinetic helicity

Nonalignment of  
rotation and gravity

7

Helicity in the Sun and Stars

Space weather 
coronal heating

Alpha effect from 
global simulations

Magnetic helicity 
production

Magn. helicity fluxes

Dynamo - Corona 
connection 

Importance of   
magnetic helicity  

for coronal heating 
and X-ray emission 
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Viviani et al.: Axi- to nonaxisymmetric dynamo mode transition in solar-like stars

Fig. 1. Mollweide projection of radial velocity ur at r = 0.98R for Runs A2, C3, Ga, H, Ha, and La.
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where Cm = 2 � �m0. We find that for more rapid rotation the
radial kinetic energy peaks at smaller scales (higher `, close to
` = 100 for Run La) and the kinetic energy at large scales (lower
`) becomes smaller; see Fig. 2a. The increasing rotational influ-
ence is clearly seen in Fig. 2b, where we plot the value of ` at
the maximum of the radial velocity spectra as a function of the
Coriolis number for all runs. The dependence is consistent with
a power law with Co0.26, which is relatively close to the theo-
retically expected 1/3 scaling for rotating hydrodynamic convec-
tion near onset (Chandrasekhar 1961). This is shallower than the
slope of about 1/2 found for the horizontal velocity spectra in
the simulations of Featherstone & Hindman (2016a). When we
only consider the high-resolution runs (blue line in Fig. 2b), we

observe a steeper trend (Co0.46). Especially at rapid rotation, the
high-resolution runs start deviating significantly from their low-
resolution counterparts, and the scale of convection is reduced
much more strongly in the former class of runs.

To look at the energy of the radial velocity field at different
values of m, we decompose it at the surface, as described in
Appendix A. In Fig. 3 we plot the kinetic energy for 0  `  10.
The total kinetic energy at the surface is decreasing with rotation
(panel a), and most of the kinetic energy is contained in the small
scales (panel b, orange line). While the fifth nonaxisymmetric
mode is mostly constant with increasing rotation (red line), the
axisymmetric mode (m = 0) varies strongly and sometimes has
comparable or even higher energy than m = 5.

Nonaxisymmetric structures in the velocity field are also vis-
ible in Fig. 1 around the equator, in particular for Run La. This
is in agreement with previous studies (e.g., Brown et al. 2008),
which reported the presence of clear nonaxisymmetric large-
scale flows for hydrodynamic simulations in parameter regimes
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differential rotation turbulent convective motions

alpha effect

pumping

diffusion

no direct measurements
Viviani et al. 2018

We can use numerical simulations to 
determine turbulent effects.

Solar and Stellar Dynamos
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B = B + b0 u = U + u0

r⇥ (U ⇥B) = (B ·r)U �B(r · U)� (U ·r)B

Shear Advection

Electromotive force: 
Turbulent dynamo effects

Dynamo theory
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Table 1. Summary of Runs.

Run δR PrSGS PrM Ta[1010] Ra[107] Co Re

I 0 2.5 1 1.4 2.0 7.8 35
II 0 0.5 0.5 1.5 0.3 12 24
III 0.1 2 1 1.5 3.8 9.1 31
IV 0.1 2 1 1.5 2.8 9.5 30

Notes. The second to sixth columns show quantities that are input pa-
rameters to the models, whereas the quantities in the last two columns
are computed from the saturated states of the simulations.

and magnetic field evolution (Warnecke et al. 2014). Even a sim-
ulation with PrSGS = 1 shows no qualitative difference to Runs I
and IV (Käpylä et al. 2015). However, in Run II, both Prandtl
numbers are reduced to PrSGS = PrM = 0.5, which leads to a
different differential rotation profile and poleward migration in-
stead of equatorward migration of the magnetic field (Warnecke
et al. 2014). Beside the four MHD simulations, we also perform
corresponding hydrodynamic (HD) simulations, which are indi-
cated by ‘h’.

Throughout this paper, we will invoke the mean-field ap-
proach, within which we decompose quantities such as B into
mean and fluctuating parts, B and B′ = B − B, respectively. We
define the mean as the azimuthal (i.e., φ) average. However, of-
ten we will use additional temporal or spatial averages denoted
as 〈.〉c, with c = t, r, θ. Using this, we also define the merid-

ional distribution of the turbulent velocity u′rms(r, θ) = 〈u′ 2〉t
1/2

taking all velocity components into account. When presenting
the results, we often use a normalization for the transport co-
efficients motivated by the first-order-smoothing-approximation
(FOSA), employing α0 = u′rms/3 and ηt0 = τu

′ 2
rms/3 with an es-

timate of the convective turnover time τ = HpαMLT/u
′
rms, where

Hp = −(∂ ln p/∂r)−1 is the pressure scale height and αMLT is
the mixing length parameter chosen to 5/3. Note here, that these
normalization quantities depend on radius and latitude.

The results below are either presented as normalized quanti-
ties or in physical units by choosing a normalized rotation rate
Ω̃ =Ω0/Ω%=5, where Ω% = 2.7 × 10−6 s−1 is the solar rotation
rate and assuming the density at the base of the convection zone
(r = 0.7R%) to have the solar value ρ = 200 kg m−3; see more
details and discussion about the relation of the chosen kind of
simulation to real stars in Käpylä et al. (2013, 2014), Warnecke
et al. (2014) and Käpylä et al. (2015). The simulations were per-
formed with the Pencil Code1, which uses a high-order finite dif-
ference method for solving the compressible equations of MHD.

3. Test-field method

3.1. Theoretical background

We consider the induction equation in the mean-field approach

∂B

∂t
= ∇ × (u × B + u′ × B′) − ∇ × η∇ × B, (1)

where

u′ × B′ = E (2)

1 http://github.com/pencil-code/

is the turbulent electromotive force arising from the correlation
of the fluctuating velocity and magnetic fields. Note that Equa-
tion (1) is an exact equation in MHD, where not any assumptions
have been made except that the average must obey the Reynolds
rules. At this stage, the azimuthal average does not require any
scale separation. The E can be expanded in terms of the mean
magnetic field B,

E = a · B + b · ∇B + . . . = Ea + Eb + . . . , (3)

where in the following we truncate the expansion after the first
order spatial derivatives of B and disregard any temporal deriva-
tives. This, however, does require scale separation, hence only
the effects of the magnetic field at the larger scales will be cap-
tured by this approach. Likewise, only for slowly varying mean
magnetic fields a proper representation of E by Eq. (3) can be ex-
pected. We emphasize that this is not a principal restriction and
that it has been relaxed in earlier applications of the test-field
method (Brandenburg 2008; Rheinhardt & Brandenburg 2012).
In Equation (3), a and b are tensors of rank two and three, re-
spectively. Dividing these, as well as the derivative tensor ∇B

into symmetric and anti-symmetric parts, we can rewrite Equa-
tion (3) as

E = α · B + γ × B − β · (∇ × B) − δ × (∇ × B) − κ · (∇B)(S ), (4)

where α is the symmetric part of a giving rise to the so-called α-
effect (Steenbeck et al. 1966), γi = −εi jka jk/2 characterizes the
anti-symmetric part of a and describes changes of the magnetic
field as it were frozen into the velocity γ (also: ‘turbulent pump-
ing’) (e.g. Ossendrijver et al. 2002), β is the symmetric part of
the rank two tensor acting upon ∇ × B, which characterizes the
turbulent diffusion, the vector δ quantifies its antisymmetric part
and enables what is known as the Rädler effect (Rädler 1969),
(∇B)(S ) is the symmetric part of the derivative tensor and κ is
a rank-three tensor, whose interpretation is still not fully under-
stood.

Calculating these transport coefficients will lead to an under-
standing which physical processes are responsible for the evo-
lution and generation of the mean magnetic field. The test-field
method (Schrinner et al. 2005, 2007, 2012) is one way to cal-
culate these coefficients from global dynamo simulations. For
computing E, we solve for the fluctuating magnetic field for a
chosen test field BT,

∂B′

∂t
= ∇×

(

u′ × BT + u × B′ + u′ × B′ − u′ × B′
)

−∇×η∇×B′.

(5)

This allows us then to calculate the E for every given BT by tak-
ing u and u′ from the global simulation. By choosing nine inde-
pendent vectorial test fields, we have sufficiently many realiza-
tions of Equation (3) to solve for all coefficients of Equation (4).
A detailed description and discussion, in particular for spherical
coordinates can be found in Schrinner et al. (2005, 2007).

The testfield method in the presented form is only valid in
the absence of a “primary magnetic turbulence”, that is, if the
magnetic fluctuations B′ vanish for B ≡ 0. However, for suffi-
ciently high magnetic Reynolds numbers a small-scale dynamo
may exist which creates magnetic fluctuations also in the ab-
sence of B. For the simulations considered, this cannot be ruled
out completely. We denote such fluctuations by B′0 and the cor-
responding velocity fluctuations by u′0 while those fluctuations
which vanish with the mean field shall be denoted by B′

B
and
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Ei = aijBj + bijk@jBk + ...

Alpha effect
Turbulent pumping

Turbulent diffusion

Rädler effect

Electromotive force I
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Electromotive force II
Contributions:

Alpha effect: amplification by cyclonic convection

Turbulent pumping: turbulent transport of  mag. field.

Turbulent diffusion: diffusion of  mag. field.

+ Additional turbulent effects….

Test-field method: Measuring turbulent dynamo effects

Applying 9 linear independent test-fields, no back reaction

Calculating corresponding electromotive force

Inverting for turbulent dynamo effects

Rädler effect: delta effect, shear-current effect

„Easy“ approach 

scalar, only acts on toroidal field

radial, tuned to fit the Sun

scalar, tuned to fit the Sun

Not considered

Not considered
Schrinner et al. 2005, 2007, 2012
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Global stellar dynamo simulations Warnecke et al.: Influence of a coronal envelope on global simulations

Fig. 15. Mean toroidal magnetic field Bφ evolution as time-latitude (butterfly) diagram, plotted in kG at a radius r = 0.98 R during a 20yr interval
in the saturated stage for Runs A1, A1c, A1c2 and A1pc (top row), Runs A2, A3, A3t and A4 (middle row) and Runs B1, B1c, B3 and B3t (bottom
row). The dashed horizontal lines indicate the equator (θ = π/2). Note, that the time interval in Run B1 is 40 yr and the color table is cut at lower
values than in the other runs.

dence on the cooling profile and the coronal envelope, see the
last rows of Figures 15 and 16. In Run B1 the magnetic field
shows also indications, that it migrates equatorward, in particu-
lar in the southern hemisphere, see Figure 15. The field evolution
is similar to the one in Run A1, but due to the slower rotation,
the cycle period is extended to around 10 years. Beside the indi-
cation of the equatorward migration, there exist also a poleward
branch at high latitudes, which is in phase with the equatorward
branch. A cooling layer, which causes the temperature minimum
to be below the surface as in Run A1c, also effects the evolution
of magnetic field for slower rotation, see Run B1c in Figures 15
and 16. Similar as in Run A1c, the field becomes constant in time
leading to band of the same polarity in the saturated stage. On the
top of this dynamo mode, there is a fast oscillating dynamo mode
near the equator, similar to Run A1c. Using this cooling layer
with a coronal envelope, Run B3, the poleward branch near the
equator becomes more pronounced and the period longer. The
period is comparable with the poleward branch in Runs A2, A3
and A4, even though their rotation is 5/3 higher. In contrast to
the these runs, there exist no indication of equatorward migra-
tion at high latitudes and the magnetic field develop in time con-
stant band of fields, similar to Runs A1c and B1. If we apply the
same cooling profile as in Run A1c2 and Run A3t, the magnetic
field evolution change, see Run B3t in Figure 15. The dynamo
generates a weak equatorward branch near high latitudes, simi-
lar to Run A3t, but with less field strength. Near the equator re-
gion, the magnetic field is constant over time and concentrates in
band at around ± 30 latitude, negative (positive) in the northern

(southern) hemisphere. In the time-radius diagrams of Figure 16,
we find that radial structure of the mean toroidal magnetic field
of Run B1 is very similar to Run A1. The field is strongest in
the middle of the convection zone and then propagates up and
downwards to the surface and bottom of the convection zone.
However, the field is not as strong as in Run A1 and the pole-
ward fast migrating dynamo mode is more pronounced than in
Run A1. The magnetic field dependence on radius of Run B1c
is similar to Run A1c, where in most of the convection zone,
there exist one magnetic field polarity and the is strongest in the
lower half of the convection zone. However, the fast oscillating
dynamo mode is affecting the magnetic field near the surface.
The toroidal magnetic field of Run B3 is mostly concentrated
near the surface, but show also field concentration in the middle
of the convection zone, which has the opposite polarity than at
the surface. In the case of Run B3t, the mean toroidal magnetic
field is mostly concentrated in the upper half of the convection
zone, where it has a constant polarity. However, this constant
polarity gets interrupted by a weaker oscillating dynamo mode,
which has the same period as the equatorward migrating branch
at high latitudes.

If one compare the runs of this work with the runs of the
work by Warnecke et al. (2013a), there are some similarities
in the magnetic field evolution. The runs of Warnecke et al.
(2013a) have more than twice the value in Prandtl number and
a lower stratification (ρ/ρsurf = 14), but the other parameters
(Re, PrM , Co) are comparable with the runs of this work. Run A
of Warnecke et al. (2013a), whose setup is similar to Run A3t,
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Fig. 16. Mean toroidal magnetic field Bφ evolution as time-radius diagram, plotted in kG at a 25◦ latitude during a 20yr interval in the saturated
stage for Runs A1, A1c, A1c2 and A1pc (top row), Runs A2, A3, A3t and A4 (middle row) and Runs B1, B1c, B3 and B3t (bottom row). The
dashed horizontal lines show the radii r = R, r = 0.98 R and r = 0.85 R. Note, that the time range in Run B1 is twice as long and the color table
cut earlier than in the other runs.

show also a similar magnetic field evolution. At high latitudes
the mean toroidal field migrates equatorward but in contrast to
Run A3t of this work, near the equator the field seems to con-
tinue to propagate equatorward with some poleward interrup-
tions, see top left panel of Figure 12 in Warnecke et al. (2013a).
Also the radial distribution is similar. The field is mostly concen-
trated near the surface, see last panel of Figure 13 in Warnecke
et al. (2013a). For the slower rotating case, the setup of Run B in
Warnecke et al. (2013a) is similar to the setup of Run B3t, except
the higher the Prandtl number and lower stratification. However,
the magnetic field evolution seems to be more similar to Run B3,
than Run B3t in the sense, that the field becomes constant in time
in the saturated stage. Also Run B does not develop a equator-
ward migrating field at high latitudes.

To investigate the cause of the propagating direction of the
magnetic field, we apply the same technique of Warnecke et al.
(2014). We calculate the propagation direction using the so-
called Parker–Yoshimura Rule (Parker 1955; Yoshimura 1975).
There the magnetic field migration is described as a propagating
αΩ dynamo wave, whose direction is given by

ξmig(r, θ) = −αêφ × ∇Ω, (31)

where êφ is the unit vector in the φ-direction. We calculate α
using the formula (Pouquet et al. 1976)

α =
τc

3













−ω′ · u′ +
j · b

ρ













, (32)

where τc is the turbulent correlation time, which we chose to be
the turbulent turnover time τ = Hp/u

′
rms. The first term is the ki-

netic helicity of the fluctuating velocity field, where ω′ = ∇× u′

is the fluctuating vorticity, and the second term is related to the
magnetic helicity of the fluctuating fields, with j = ∇ × b being
the fluctuating current density related the fluctuating magnetic

field b = B − B. Following this rule, α is mostly positive (nega-
tive) in the northern (southern) hemisphere, an equatorward mi-
grating toroidal field has to be generated by a negative radial gra-
dient of Ω. ξmig gives a predicted direction of migration, which
we can now compare with the actually migration of the field.

In Figure 17 we plot the rms of the mean toroidal magnetic

field, time-averaged over the saturated stage, Brms
φ ≡ 〈B

2

φ〉
1/2
t to-

gether with the direction of migration ξmig. In Run A1, the large

concentration of Brms
φ in the middle of the convection zone co-

incide with a predicted equatorward migration direction, this is
most likely responsible for the equatorward migration at mid and
lower latitudes, see Figure 15. At this location, the radial gradi-
ent of Ω is negative, generating strong toroidal magnetic field.
The smaller concentration coincide with predicted poleward mi-
gration. It lies closer to the surface and therefore seems to be
responsible for the fast poleward migrating dynamo mode seen
in Figures 15 and 16. At this location, the radial gradient of Ω
is positive. This have been already described with a similar run
in the work by Warnecke et al. (2014). However, in the work
by Warnecke et al. (2014), the corresponding analysis did not
include the high latitudes, compare Figure 3 of Warnecke et al.
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Fig. 15. Mean toroidal magnetic field Bφ evolution as time-latitude (butterfly) diagram, plotted in kG at a radius r = 0.98 R during a 20yr interval
in the saturated stage for Runs A1, A1c, A1c2 and A1pc (top row), Runs A2, A3, A3t and A4 (middle row) and Runs B1, B1c, B3 and B3t (bottom
row). The dashed horizontal lines indicate the equator (θ = π/2). Note, that the time interval in Run B1 is 40 yr and the color table is cut at lower
values than in the other runs.
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lar in the southern hemisphere, see Figure 15. The field evolution
is similar to the one in Run A1, but due to the slower rotation,
the cycle period is extended to around 10 years. Beside the indi-
cation of the equatorward migration, there exist also a poleward
branch at high latitudes, which is in phase with the equatorward
branch. A cooling layer, which causes the temperature minimum
to be below the surface as in Run A1c, also effects the evolution
of magnetic field for slower rotation, see Run B1c in Figures 15
and 16. Similar as in Run A1c, the field becomes constant in time
leading to band of the same polarity in the saturated stage. On the
top of this dynamo mode, there is a fast oscillating dynamo mode
near the equator, similar to Run A1c. Using this cooling layer
with a coronal envelope, Run B3, the poleward branch near the
equator becomes more pronounced and the period longer. The
period is comparable with the poleward branch in Runs A2, A3
and A4, even though their rotation is 5/3 higher. In contrast to
the these runs, there exist no indication of equatorward migra-
tion at high latitudes and the magnetic field develop in time con-
stant band of fields, similar to Runs A1c and B1. If we apply the
same cooling profile as in Run A1c2 and Run A3t, the magnetic
field evolution change, see Run B3t in Figure 15. The dynamo
generates a weak equatorward branch near high latitudes, simi-
lar to Run A3t, but with less field strength. Near the equator re-
gion, the magnetic field is constant over time and concentrates in
band at around ± 30 latitude, negative (positive) in the northern

(southern) hemisphere. In the time-radius diagrams of Figure 16,
we find that radial structure of the mean toroidal magnetic field
of Run B1 is very similar to Run A1. The field is strongest in
the middle of the convection zone and then propagates up and
downwards to the surface and bottom of the convection zone.
However, the field is not as strong as in Run A1 and the pole-
ward fast migrating dynamo mode is more pronounced than in
Run A1. The magnetic field dependence on radius of Run B1c
is similar to Run A1c, where in most of the convection zone,
there exist one magnetic field polarity and the is strongest in the
lower half of the convection zone. However, the fast oscillating
dynamo mode is affecting the magnetic field near the surface.
The toroidal magnetic field of Run B3 is mostly concentrated
near the surface, but show also field concentration in the middle
of the convection zone, which has the opposite polarity than at
the surface. In the case of Run B3t, the mean toroidal magnetic
field is mostly concentrated in the upper half of the convection
zone, where it has a constant polarity. However, this constant
polarity gets interrupted by a weaker oscillating dynamo mode,
which has the same period as the equatorward migrating branch
at high latitudes.

If one compare the runs of this work with the runs of the
work by Warnecke et al. (2013a), there are some similarities
in the magnetic field evolution. The runs of Warnecke et al.
(2013a) have more than twice the value in Prandtl number and
a lower stratification (ρ/ρsurf = 14), but the other parameters
(Re, PrM , Co) are comparable with the runs of this work. Run A
of Warnecke et al. (2013a), whose setup is similar to Run A3t,
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Fig. 17. Equatorward migration for Runs A1, A1c, A1c2 and A1pc (top row), Runs A2, A3, A3t and A4 (middle row) and Runs B1, B1c,

B3 and B3t (bottom row). Color coded Brms
φ is plotted during the saturated stage together with white arrows show the direction of migration

ξmig(r, θ) = −αêφ ×∇Ω of an αΩ dynamo wave (Parker 1955; Yoshimura 1975), see Equation (31), where we suppress the arrows above r = 1.05.

The black solid lines indicate isocontours of Bφ at 2.0 kG. The dashed lines indicate the surface (r = R).

(2014) with Figure 17. At around 45◦ latitude, there exist a con-
centration of mean toroidal magnetic field, which coincide with
a predicted poleward propagation, which is seen at high latitudes
in Figure 15. As described by Warnecke et al. (2014), the prop-

agation direction corresponding to location of strong Brms
φ is in

Run A1c inclusive. However, there exist a field concentration at
low latitudes close to the surface, which show poleward migra-
tion, similar to Run A1. This correspond most probably to the
fast poleward migrating dynamo mode seen in Figure 15. The
inclusive predicted migration direction at mid-latitudes and also
high latitudes seems to result in the in time constant magnetic
fields of Run A1c. Run A1c2, which is essential the same run as
Run IV of Warnecke et al. (2014), has a similar field distribution
than Run A1. The exist a strong concentration with predicted
equatorward migration field, a bit weaker concentration closer to
the surface with poleward migration and at higher latitudes (45◦)
a weak poleward migrating branch. These three features all agree

with the actual migration direction of toroidal fields at these lo-

cations, see Figure 15. Brms
φ of Run A1pc is mostly concentrated

near the surface, where the predicted migration direction points
poleward. This agrees with the actual migration direction in Fig-

ure 15. Also it exists a smaller and weaker concentration on Brms
φ

in the middle of the convection zone, where the predicted migra-
tion is equatorward. This coincides with the varying oscillating
magnetic field in the middle of the convection zone, which is
actually migrating equatorward.

Runs with a coronal envelope have a different field distri-

bution, as discussed above. In Run A2, Brms
φ is concentrated at

the surface at low latitudes together with a predicted poleward
migration. This agrees with the magnetic field evolution as seen
from Figures 15 and 16. In Run A3, the magnetic field distribu-
tion and the corresponding predicted migration is similar. The

in the middle of the convection zone exiting Brms
φ concentration,
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FIG. 2.— Time evolution of the mean toroidal magnetic field Bφ in the convection zone for Runs I, II, III and IV from left to right. In the top row the radial cut
is shown at r = 0.98R and in the bottom row the latitudinal cut at 90− θ = 25◦. Dark blue shades represent negative values and light yellow shades positive
values. The dashed horizontal lines show the location of the equator at θ = π/2 (top) and the radius r = 0.98R and r = 0.84R (bottom).

FIG. 3.— Local dynamo parameters Cα and CΩ for Runs I (top), II (mid-
dle) and III (bottom). Cα (solid line) and CΩ (dashed line) for two latitudes
in the northern hemisphere as a function of radius r: θ = 25◦ (black) and
θ = 65◦ (red line).

there is some near-surface field enhancement similar to Run I,
but closer to the equator. However, the maximum of the mean
toroidal field is near the bottom of the convection zone, al-
though at higher latitudes it occupies nearly the entire con-
vection zone.

Next, we compare the differential rotation profiles of the
runs, see middle row of Figure 4, where we also skip Run IV
because of its similarity to Run I. All runs develop cylindrical
contours of constant rotation as a dominant pattern. However,
Runs I and III possess a local minimum of angular velocity
between ±15◦ and ±40◦ latitude, which is the same latitude
range where EM of Run I is found. A local minimum im-
plies the existence of a negative gradient of Ω. As described
in Sect. 1, a negative gradient can lead to EM, if α is positive
in the northern hemisphere. In Run II, the contours of con-

stant rotation are nearly cylindrical with a slightly stronger ra-
dial inclination than in Run I. This is expected and also seen
in other global simulations (e.g. Nelson et al. 2013), where
PrSGS is closer or below unity. Besides a narrow layer at the
bottom of the convection zone, ∇rΩ is always positive and
there is no local minimum as in Runs I and IV.

Furthermore, we calculate the local dynamo numbers

Cα =
α∆R

ηt0
, CΩ =

dΩ/dr∆R3

ηt0
, (2)

where ∆R=0.3R is the thickness of the convection zone and
ηt0 = αHpurms(r, θ)/3 is the estimated turbulent diffusivity
with the mixing length parameter αMLT = 5/3, the pressure
scale height Hp and the turbulent rms velocity urms(r, θ). In
Figure 3 we plot Cα and CΩ as functions of radius for two
different latitudes. Run I develops a strong negative CΩ and
a positive Cα at mid-depth at a latitude of 25◦ and positive
CΩ and Cα near the surface. In Run II, CΩ is, except at the
bottom of the domain, positive together with positive Cα. The
cooling layer in Run III causes Cα to decrease near the sur-
face, and at low latitudes it becomes even weakly negative.
As in Run I, CΩ obtains negative values in the mid-region of
the convection zone, but the magnitude of the minimum is
roughly two times weaker, the region is narrower, and occurs
at somewhat larger depth compared to Run I.

To investigate this in more detail we calculate the migra-
tion direction smig using the expression derived by Yoshimura
(1975)

smig(r, θ) = −αêφ ×∇Ω, (3)

where êφ is the unit vector in the φ-direction. Yoshimura
(1975) extended the Cartesian αΩ dynamo model by Parker
(1955) to spherical coordinates and solved the resulting dy-
namo wave equation. Note, that the used α is scalar instead
of a tensor, which is in general a strong simplification. For our
calculation, we use α as given by Eq. (1), where it depends on
r and θ. In all of our runs, α is on average positive (negative)
in the northern (southern) hemisphere.

The migration direction smig in the northern hemisphere for
Runs I to III is plotted in the bottom row of Figure 4. The ar-
rows show the calculated normalized migration direction and
the red contours indicate 〈|Bφ|〉t above 2 kG. In Run I, in the
region where the mean toroidal field is the strongest, Eq. (3)
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Warnecke et al.: Influence of a coronal envelope on global simulations

Fig. 15. Mean toroidal magnetic field Bφ evolution as time-latitude (butterfly) diagram, plotted in kG at a radius r = 0.98 R during a 20yr interval
in the saturated stage for Runs A1, A1c, A1c2 and A1pc (top row), Runs A2, A3, A3t and A4 (middle row) and Runs B1, B1c, B3 and B3t (bottom
row). The dashed horizontal lines indicate the equator (θ = π/2). Note, that the time interval in Run B1 is 40 yr and the color table is cut at lower
values than in the other runs.

dence on the cooling profile and the coronal envelope, see the
last rows of Figures 15 and 16. In Run B1 the magnetic field
shows also indications, that it migrates equatorward, in particu-
lar in the southern hemisphere, see Figure 15. The field evolution
is similar to the one in Run A1, but due to the slower rotation,
the cycle period is extended to around 10 years. Beside the indi-
cation of the equatorward migration, there exist also a poleward
branch at high latitudes, which is in phase with the equatorward
branch. A cooling layer, which causes the temperature minimum
to be below the surface as in Run A1c, also effects the evolution
of magnetic field for slower rotation, see Run B1c in Figures 15
and 16. Similar as in Run A1c, the field becomes constant in time
leading to band of the same polarity in the saturated stage. On the
top of this dynamo mode, there is a fast oscillating dynamo mode
near the equator, similar to Run A1c. Using this cooling layer
with a coronal envelope, Run B3, the poleward branch near the
equator becomes more pronounced and the period longer. The
period is comparable with the poleward branch in Runs A2, A3
and A4, even though their rotation is 5/3 higher. In contrast to
the these runs, there exist no indication of equatorward migra-
tion at high latitudes and the magnetic field develop in time con-
stant band of fields, similar to Runs A1c and B1. If we apply the
same cooling profile as in Run A1c2 and Run A3t, the magnetic
field evolution change, see Run B3t in Figure 15. The dynamo
generates a weak equatorward branch near high latitudes, simi-
lar to Run A3t, but with less field strength. Near the equator re-
gion, the magnetic field is constant over time and concentrates in
band at around ± 30 latitude, negative (positive) in the northern

(southern) hemisphere. In the time-radius diagrams of Figure 16,
we find that radial structure of the mean toroidal magnetic field
of Run B1 is very similar to Run A1. The field is strongest in
the middle of the convection zone and then propagates up and
downwards to the surface and bottom of the convection zone.
However, the field is not as strong as in Run A1 and the pole-
ward fast migrating dynamo mode is more pronounced than in
Run A1. The magnetic field dependence on radius of Run B1c
is similar to Run A1c, where in most of the convection zone,
there exist one magnetic field polarity and the is strongest in the
lower half of the convection zone. However, the fast oscillating
dynamo mode is affecting the magnetic field near the surface.
The toroidal magnetic field of Run B3 is mostly concentrated
near the surface, but show also field concentration in the middle
of the convection zone, which has the opposite polarity than at
the surface. In the case of Run B3t, the mean toroidal magnetic
field is mostly concentrated in the upper half of the convection
zone, where it has a constant polarity. However, this constant
polarity gets interrupted by a weaker oscillating dynamo mode,
which has the same period as the equatorward migrating branch
at high latitudes.

If one compare the runs of this work with the runs of the
work by Warnecke et al. (2013a), there are some similarities
in the magnetic field evolution. The runs of Warnecke et al.
(2013a) have more than twice the value in Prandtl number and
a lower stratification (ρ/ρsurf = 14), but the other parameters
(Re, PrM , Co) are comparable with the runs of this work. Run A
of Warnecke et al. (2013a), whose setup is similar to Run A3t,
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FIG. 3.— Top row: color coded B
rms
φ during the saturated stage for Runs I–IV (left to right). White arrows show the direction of migration ξmig(r, θ) =

−αêφ × ∇Ω; see Equation (3). The black solid lines indicate isocontours of Bφ at 2.5 kG. Bottom row: Ω(r, θ)/Ω0 for the same runs. The dashed lines
indicate the surface (r = R).

FIG. 4.— Local dynamo parameters Cα and CΩ for Runs I–IV. Cα (solid black line) and CΩ (dashed red line) for 25◦ latitude in the northern hemisphere as
a function of r.

between ±15◦ and ±40◦ latitude, which is the same latitude
range where EM was found in Runs I and IV. In Run II, the
contours of constant angular velocity are nearly cylindrical,
but with a slight radial inclination, which is more than in
Run I. This is expected due to the enhanced diffusive heat
transport and is also seen in other global simulations (e.g.

Brun & Toomre 2002; Brown et al. 2008), where PrSGS is
closer to or below unity. Unlike in Runs I, III, and IV, there is
no local minimum of Ω. This can be attributed to the higher
value of the SGS heat diffusivity in Run II, which smoothes
out entropy variations, leading to a smoother rotation profile
via the baroclinic term in the thermal wind balance (see cor-

A&A 609, A51 (2018)

out of their solutions and inverting nine disjoint equation sys-
tems of rank three to obtain three of the 27 transport coe�cients
by each. At higher ReM, some of the eigensolutions of the ho-
mogeneous parts of the test problems can become unstable. To
suppress their influence, the test solutions are re-initialized to
zero in regular time intervals (Mitra et al. 2009; Hubbard et al.
2009). Their length is typically chosen to be at least 30 turnover
times. As the transport coe�cients are also required to reflect the
temporal changes in the turbulence due to the magnetic cycle, an
upper bound is set by a su�ciently small fraction (say, one tenth)
of the cycle period. To obtain the coe�cients ãµ�, b̃µ�r and b̃µ�✓

in the non-covariant relation,

Eµ = ãµ�B� + b̃µ�r
@B�
@r
+ b̃µ�✓

1
r

@B�
@✓
, � = r, ✓, �, (6)

we filter out the initial, transient epochs and those contaminated
by the unstable eigensolutions, and perform a reliability check
of statistical (quasi-) stationarity. The (covariant) coe�cient ten-
sors in Eq. (4) are then obtained from the non-covariant ones
employing the relations (18) of Schrinner et al. (2007). We note
that their sign conventions for ↵ and � are di↵erent from ours.
The implementation has been validated using a simple model of
a forced turbulent dynamo and comparing it with a correspond-
ing mean-field model; see Appendix B. We have also verified it
using a stationary laminar flow; see Appendix C.

4. Results

In Sects. 4.1–4.4 we focus on the analysis of the time-averaged
transport coe�cients, for simplicity and compactness leaving
out h·it indicating time averaging, while in Sect. 4.5 we discuss
the variations in time. In Sects. 4.6 and 4.7 we investigate the
magnetic quenching and cyclic variation of the transport coef-
ficients due to the mean magnetic field. In Sect. 4.8 we dis-
cuss the mean magnetic field propagation by applying a simi-
lar technique as in Warnecke et al. (2014). Finally, in Sect. 4.9
we compare the results from the test-field method with results
obtained from the multidimensional regression method used
by Brandenburg & Sokolo↵ (2002) and later by, for example,
Racine et al. (2011), Augustson et al. (2015), and Simard et al.
(2016).

4.1. Meridional profiles of ↵

In Fig. 1 we plot the time averages of all components of ↵. All
three diagonal components of ↵ are mainly positive in the north
and negative in the south, but have a sign reversal in the lower
layers of the convection zone (except ↵rr). This behavior is sim-
ilar to that of ↵ for isotropic and homogeneous turbulence in the
low-dissipation limit (Pouquet et al. 1976) via

↵ = �⌧
3

⇣
!0 · u0 � j0 · b0/⇢

⌘
⌘ ↵K + ↵M, (7)

where ↵K and ↵M are the kinetic and magnetic ↵ coe�cients,
respectively, !0 = r ⇥ u0 is the fluctuating vorticity, !0 · u0 is
the small-scale kinetic helicity, j0 = r ⇥ b0/µ0 is the fluctuating
current density, j0 · b0 is the small-scale current helicity, and ⇢ is
the mean density. For a direct comparison we plot the meridional
distributions of ↵K and ↵M in Fig. 1 as well as the latitudinal
profiles of the diagonal components of ↵ together with those of
↵K and ↵K+↵M at three di↵erent depths in Fig. 2.

It turns out that ↵rr is the strongest of all components of ↵, in
particular in concentrations near the surface at low latitudes; see

Fig. 1. Components of ↵ and ↵K,M, normalized by ↵0 = u
0
rms/3, and

normalized di↵erential rotation ⌦/⌦0; all quantities are time averaged.
Numerals at the bottom right of each panel: overall parity P̃, see Eq. (8).

Figs. 1 and 2. The same has been found previously for Carte-
sian shear flows using both multidimensional regression meth-
ods (Brandenburg & Sokolo↵ 2002; Kowal et al. 2006) as well
as the test-field method (Brandenburg 2005b). Unfortunately,
a comparison with Käpylä et al. (2009), where transport coef-
ficients for convection in a Cartesian box have been obtained by
the test-field method, is not possible as ↵rr was not determined
there. In the middle of the convection zone, ↵rr is much weaker
than above and below; but compared to the other components of
↵ the values are still high or similar (↵��). The latitudinal depen-
dency shows a steep decrease from low to high latitudes.

Next, ↵✓✓ is around six and two times weaker than ↵rr and
↵��, respectively, and shows multiple sign reversals on cylindri-
cal contours; see Fig. 1. A region of negative (positive) ↵✓✓ at
mid-latitudes in the northern (southern) hemisphere coincides
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magnetic field. The definitions of the various energy densities
are
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where the total kinetic energy is � �DRE MCE CKE and the
total magnetic energy is � �TME PME FME.

The periodic modulation of the kinetic energy in both the
convection (CKE) and the differential rotation (DRE) can be

seen in Figure 2(a), which covers the first 20 years of evolution
of the simulation. Those changes are accompanied by the wax
and wane of the energy contained in the magnetic field, though
with a different temporal shift. The mean (longitudinally
averaged) toroidal magnetic fields (TME) contain the most
magnetic energy, being formed by the action of the differential
rotation on the poloidal magnetic field (e.g., Section 4.3). The
nonaxisymmetric magnetic fields (FME) have the second
greatest magnetic energy, whereas the mean (longitudinally
averaged) poloidal magnetic fields (PME) contain the least
magnetic energy. A double-peaked structure can be seen in the
FME as well as in the TME. These variations in turn are largely
due to the modulation of the differential rotation over the
course of a cycle, which becomes readily apparent in Figure
2(b). Particularly, the pole and equator are accelerated as the
system recovers from the quenching of the differential rotation
that occurs during the magnetic maxima, leading to the first
peak. There is also a phase difference in the peak in the
magnetic energy between the deep and upper CZs, which
results in the second peak. The specific correlations and
mechanisms that are behind this oscillatory behavior are
covered below and in later sections.
The polarity reversals of the magnetic field are illustrated for

the first 20 years of the simulation in Figure 2(c) and over an
extended interval of the simulation in Figure 3. The magnetic
field begins to regularly oscillate roughly every 3.1 years
between positive and negative polarity states. Such regular
cycling behavior arises shortly after the roughly 2 year
kinematic growth phase of the magnetic fields, which began
at year zero when this MHD simulation was initialized by
inserting a dipolar magnetic field into a pre-existing but mature
hydrodynamic simulation. That initial magnetic field had a
strength of about 100 G at the base of the CZ. The initial energy
in that magnetic field is about 105 times smaller than the total
kinetic energy. The oscillations in the magnetic energy then
continue throughout the entire evolution of the system.
Throughout this paper two cycle periods will be cited. There
is a 3.1 year magnetic energy cycle measured between maxima
in the magnetic energy (or half-polarity cycle), which could be
considered to be akin to the 11 year sunspot cycle. There is also
a 6.2 year polarity cycle measured as the interval between
magnetic maxima that have the same polarity as seen in
Figure 3 for instance. This polarity cycle is akin to the 22 year
solar polarity cycle.
The overall structure of the magnetic fields during a

magnetic cycle is readily apparent in both Figures 3(a) and
(b). The mean radial magnetic field (� §Br ) is largely confined to
higher latitudes, whereas the mean toroidal magnetic field field
(� §KB ) has both prominent polar and low-latitude branches. At
the radius where the magnetic fields in Figure 3 are sampled,
the mean radial and toroidal magnetic fields differ by about a
factor of three in magnitude. This ratio is approximately
maintained throughout the domain, leading to the roughly
order-of-magnitude difference between the toroidal and
poloidal magnetic energies seen in Figure 2(a). There is an
interval roughly between years 33 and 49 as seen in Figure 3
during which the system fails to fully reverse its polarity for
five magnetic cycles. This interval will be referred to as a
“grand minimum.” While the choice of the beginning and end
of this interval is somewhat arbitrary, this interval was chosen
to be between the minimum in the magnetic energy near the
upper boundary of the last “normal” cycle (near year 33, or

Figure 2. Evolution of the energy densities as well as the angular velocity
variations and mean (longitudinally averaged) toroidal magnetic field � §KB at

R0.92 ☉ over the first 20 years of the simulation. (a) Time variation of the
volume-averaged energy density of the differential rotation (DRE, black),
nonaxisymmetric flows (CKE, blue), axisymmetric toroidal magnetic energy
(TME, green), axisymmetric poloidal magnetic energy (PME, orange), and
nonaxisymmetric magnetic energy (FME, red) in units of �erg cm .3 (b) Time–
latitude diagram of angular velocity variations �%8§ 8 � �8§ � 8 80 0( { }) in
cylindrical projection, elucidating the propagation of equatorial and polar
branches of torsional oscillations. The color indicates faster rotation in red and
slower rotation in blue, with departures of up to ±10% of the bulk rotation rate.
(c) Time–latitude diagram of � §KB in cylindrical projection, exhibiting the
equatorward migration of the wreaths from the tangent cylinder, and the
poleward propagation of the higher latitude field, with the polarity of the field
such that red (blue) tones indicate positive (negative) toroidal field.
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Fig. 5. Top, from left to right: Time-averaged radial and effective radial flow Ur, Ueff
r = Ur + γr, latitudinal and effective latitudinal flow Uθ,

Ueff
θ = Uθ + γθ. Bottom: azimuthal flow Uφ, γφ, effective azimuthal flow Ueff

φ = Uφ + γφ and effective differential rotation Ωeff = Ueff
φ /r sin θ. Solid

lines in top row with arrows: flow lines of U pol, U eff
pol.

that the poloidal and toroidal constituents of B are solenoidal,
thus satisfying the first condition, we consider their evolution
focussing on the terms related to turbulent pumping and mean
velocities

∂t Bpol = ∇ ×
[(

U pol + γpol

)

× Bpol

]

+ . . . (9)

∂t Btor = ∇ ×
[(

U pol + γpol

)

× Btor +
(

U tor + γtor

)

× Bpol

]

+ . . . .

Thus, in the absence of all other effects, both Bpol and Btor are
frozen into (but not advected by) the “effective” mean poloidal
velocity U eff

pol = U pol+γpol, while the toroidal field is in addition

subject to the source term ∇ ×
(

U eff
tor × Bpol

)

, U eff
tor = U tor + γtor,

representing the winding-up of the poloidal field by the si-
multaneous effect of differential rotation and toroidal pumping
γtor = γφêφ.

In Fig. 5 we show the temporally averaged effective mean
velocities in comparison to U alone. For U eff

pol = Ueff
r êr + Ueff

θ êθ
(upper row), turbulent pumping has a significant impact: at high
(low) latitudes its radial component is dominated by the strong
upward (downward) pumping such that there Ueff

r ≈ 4Ur, while
at the tangent cylinder Ueff

θ ≈ 2Uθ, and the poleward flow in
the upper half of the convection zone is also significantly en-
hanced. Close to the surface the effective velocity has a strong
equatorward component. As a consequence, the whole merid-
ional circulation pattern, as shown by the streamlines in Fig. 5 is
changed: The three meridional flow cells aligned with the rota-
tion vector outside the tangent cylinder are no longer present in
U eff

pol. Note that, while at least 〈ρu〉t is solenoidal, no such con-

straint applies to γpol and hence also not for U eff
pol. Near-surface

patches of poloidal flux may in principle be able to reach the bot-
tom of the convection zone when transported by the meridional
circulation U pol, albeit on a rather involved route. However, this
can hardly be accomplished by the effective meridional circula-
tion U eff

pol mainly due to its massive deviations from solenoidal-
ity. Consequently, the flux transport dynamo paradigm seems to
be inconsistent with the presented simulations. Even if helioseis-
mic inversion were to determine accurately the meridional circu-
lation inside the solar convection zone, the effective meridional
velocity would still be unknown, because one cannot measure γ
inside the Sun.

The azimuthal flow Uφ and hence the differential rotation is
only marginally modified by γφ (see Fig. 5, bottom row). How-
ever, at the surface it affects the radial shear significantly, as
shown in Fig. 6, where we plot the radial derivatives of the ro-
tation rate Ω and its effective counterpart Ωeff = Ueff

φ /r sin θ.
At low latitudes, the effective radial derivative becomes negative
whereas at mid latitudes it is weakly enhanced. Note, that sim-
ulations of the type employed here do not produce a negative
radial derivative as found in the Sun (Käpylä et al. 2013; War-
necke et al. 2016a) where near the surface ∂ lnΩ/∂ ln r = −1
(e.g. Barekat et al. 2014) being possibly responsible for the equa-
torward migration of the toroidal field (e.g. Brandenburg 2005a).
Also, at this location the toroidal turbulent pumping can modify
the effective radial shear and thus the magnetic field generation.
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1. Introduction

U eff = U + γ (1)

(e.g., Ghizaru et al. 2010; Käpylä et al. 2012;
Warnecke et al. 2014; Augustson et al. 2015; Duarte et al.
2016; Guerrero et al. 2016; ?).

2. Model and setup

3. Results

3.1. Rotational dependencies of transport coefficients

3.2. Anistropy of the α tensor

3.3. Structual dependence of turbulent pumping

3.4. Rot dependence of turbulent diffusion

3.5. main dynamo drivers

in terms of α0=
1
3
urms

4. Conclusions

Fig. 1.
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Table 1. Summary of runs.

Run Ω̃ Ta[106] Ra[107] PrSGS Re Co Etot
kin Edif

kin Emer
kin Eflu

kin Etot
mag Etor

mag Epol
mag Eflu

mag

H0 0.0 0.0 4.0 2.0 52 0.0 4.863 0.127 0.706 4.031
H0.005 0.005 1.3(-4) 4.0 2.0 52 0.006 4.884 0.124 0.677 4.083
H0.01 0.01 5.4(-4) 4.0 2.0 52 0.011 4.873 0.134 0.652 4.087
H0.1 0.1 5.4(-2) 4.0 2.0 47 0.12 10.307 6.727 0.293 3.298
H0.5 0.5 1.3 4.0 2.0 47 0.62 11.203 7.608 0.292 3.303
H1 1.0 5.4 4.0 2.0 49 1.2 54.087 50.976 0.554 2.557
H1.5 1.5 9.7 4.0 2.0 41 1.9 62.036 60.103 0.337 2.364
H2 2.0 21.6 4.0 2.0 44 2.7 14.515 11.699 0.051 2.765
H2.5 2.5 33.7 4.0 2.0 43 3.4 9.541 6.811 0.041 2.689
H3.0 3.0 48.6 4.0 2.0 41 4.3 10.669 8.109 0.035 2.526
H5 5.0 125 4.0 2.0 34 8.4 5.402 3.569 0.018 1.815
H7 7.0 190 3.4 2.4 26 13.6 4.381 3.078 0.011 1.129
H10 10.0 260 2.8 2.9 18 22.9 3.107 2.176 0.005 0.926
M0.5 0.5 1.3 4.0 2.0 44 0.7 7.141 3.910 0.199 3.032 0.362 0.032 0.019 0.311
M1 1.0 5.4 4.0 2.0 40 1.5 4.084 1.259 0.074 2.751 0.775 0.074 0.063 0.638
M1.5 1.5 12 4.0 2.0 39 2.2 3.163 0.691 0.045 2.427 0.789 0.107 0.077 0.605
M2 2.0 22 4.0 2.0 40 2.9 3.065 0.483 0.036 2.547 0.479 0.055 0.048 0.376
M2.5 2.5 34 4.0 2.0 40 3.7 2.992 0.524 0.029 2.438 0.506 0.087 0.044 0.375
M3 3.0 49 4.0 2.0 39 4.5 3.584 1.268 0.026 2.290 0.593 0.120 0.050 0.423
M4 4.0 86 4.0 2.0 36 6.6 3.741 1.741 0.019 1.981 0.801 0.144 0.100 0.557
M5 5.0 35 4.0 2.0 34 8.6 3.600 1.804 0.015 1.780 0.987 0.190 0.136 0.660
M7 7.0 264 4.0 2.0 31 13.4 2.481 1.040 0.009 1.432 1.109 0.206 0.198 0.704
M10 10.0 540 4.0 2.0 27 21.5 1.550 0.465 0.005 1.079 1.159 0.212 0.242 0.705
M15 15.0 1897 7.4 2.0 27 40.3 0.746 0.066 0.002 0.6771 1.216 0.126 0.290 0.799
M30 30.0 13488 16.1 2.0 26 110.9 0.392 0.021 0.001 0.370 2.007 0.305 0.462 1.241

Notes. Second to fourths columns: input parameters.

Fig. 2. Normalized differential rotation Ω/Ω! with Ω = Ω0 + u/r sin θ for Runs H0, H0.01, H0.1, H1, M4, M10, M30 and the rms values of
the radial r sin θδΩ/δr and latitudinal shear sin θδΩ/δθ as versus Coriolis number Co. The value Ω has been calculated as a time average over the
saturated state.
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where (∇B)(s) is the symmetric part of the diffusion tensor.
We have here neglected contributions of higher than first-order
derivatives. α and β are 2-rank tensors, γ and δ vectors and κ
a 3-rank tensor. These five coefficients can be associated with
different turbulent effects important for the magnetic field evolu-
tion: the α effect (Steenbeck et al. 1966) can lead to field am-
plification via helical flows, for example in convection influ-
enced by rotation, the γ effect describes turbulent transport of
the mean magnetic field in the same way as a mean flow, the
β describes turbulent diffusion, the δ effect, also known as the
Rädler effect (Rädler 1969), can lead to dynamo action in the
presence of other effects, for example α effect or shear, al-
though it alone cannot lead to the growth of magnetic energy
(Brandenburg & Subramanian 2005), and the κ effect, the phys-
ical interpretation of which is currently unclear. However, it can
contribute, in theory, to both the amplification and diffusion of
magnetic fields.

In most cases, we express the measured quantities in a non-
dimensional form by normalizing them appropriately. For exam-
ple, we define α0 = u′rms/3 and ηt0 = τturu

′ 2
rms/3 as normalizations

for α tensor, and β and δ tensors, respectively. However, some-
times we transfer them into physical units by defining the unit
system based on the solar rotation rate Ω" = 2.7×10−6 s−1, solar
radius R = 7 × 108 m, density at the bottom of the convection
zone ρ(0.7R) = 200 kg/m3, and µ0 = 4π · 10−7 H m−1.

3. Results

All simulations have been run to the saturated stage and then
continued with the test-field method switched on for another 50
to 100 years. All the computed diagnostic quantities and plots
shown below are obtained from this time interval. The hydro-
dynamic runs are labelled with ’H’, and magnetohydrodynamic
ones with ’M’, while the number in the run label represents these
rotation rate normalized to the solar one, Ω̃.

We aimed at keeping all input parameters the same and only
change the rotation rate as shown in Table 1, but for some runs
this strategy partially failed. For Runs H7 and H10, we had to
increase the viscosity to stabilize the simulations against strong
shearing motions. For Runs M10 to M30 we decreased all dif-
fusivities (ν, η,χSGS

m ) but kept the Prandtl numbers (PrSGS,PrM)
unchanged, aiming at having roughly constant Reynolds num-
bers (Re, ReM).

The Rayleigh number for Run M5 is around 100 times the
critical value (Warnecke et al. 2018). However, the critical Ra
is known to increase as function of rotation (Chandrasekhar
1961). Hence, our slower/faster rotating runs can be expected
to be more/less above the critical value of the onset of convec-
tion than M5. This might not be the ideal modeling strategy;
the better approach would be to fix the level of supercritical-
ity in each run, but this is currently computationally too expen-
sive for such a large parameter study. Furthermore, as verified by
Warnecke et al. (2018) for a run similar to Run M5, we do not
expect an small-scale dynamo to be operating in our simulations.

Finally, to make a connection with our earlier works, we note
the following. Runs M0.5 to M10 have been already discussed in
Warnecke (2018) to determine the dynamo cycle properties, but
not all the turbulent transport coefficients were presented in that
study. Run M5 is similar to the Run I in Warnecke et al. (2014),
Run A1 in Warnecke et al. (2016), Run D3 in Käpylä et al.
(2017) and Warnecke et al. (2018), and Run GW in Viviani et al.
(2018), Run M3 is similar to Run B1 in Warnecke et al. (2016)
and Runs M10 and M15 are similar to Runs IW and JW of
Viviani et al. (2018).

Fig. 1. Dependence of kinetic and magnetic energies on rotation in
terms of Coriolis number Co. We show the total kinetic energy Etot

kin
(black lines), which is composed of the energy of the fluctuating flows
Eflu

kin
(red lines), of the differential rotation Edif

kin
(blue lines) and the

meridional circulation Emer
kin

(purple lines) for the HD runs (Set H) in
panel a and for MHD runs (Set M) in panel b. Additionally, we show
the total magnetic energy Etot

mag (black line) composed of the energy of

the fluctuating magnetic field Eflu
mag (red), of the toroidal Etor

mag (blue) and

poloidal magnetic field E
pol
mag (purple) in panel c and normalized by total

kinetic energy Etot
mag in panel d. The dotted lines show the following re-

lations between energies and Coriolis number: Ekin ∝ Co−1 in panel b,
Emag ∝ Co0.3 in panel c, and Emag/Ekin ∝ Co1 in panel d. In between the
vertical lines occurs the transition from anti-solar to solar-like differen-
tial rotations (left line: last anti-solar run, right line: first solar-like run).
See Equations (5)–(9) for the definition of the energies.
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Warnecke & Käpylä: Rotational dependence of turbulent transport coefficients

Fig. 3. Rotational dependence of the α profiles calculated with test-field method and calculated from helicities. In the first row, we plot the traces
of the α tensors, αtr, which have been determined using the test-field method for a selection of HD and MHD runs. In the second row, we plot the
kinetic αK and the sum of kinetic and magnetic alpha αKM for the corresponding runs of Set H and Set M, respectively. In the last row, we show
the root-mean-squared values of trace of tensor αtra (black lines), the kinetic αK (red), the magnetic αM (blue) and their sum αKM (orange). The
values of the magnetic runs (Set M) are shown with a dashed line with diamonds. The greed dotted line indicate a power law with an exponent of
0.5. All values are normalized by α0 = u′rms/3. The zero rotation run have been moved to Co = 10−4 to be visible in the lower panel.

of Chandrasekhar (1961) predicts a dependence of Co−0.3, while
the models of Featherstone & Hindman (2016) and Viviani et al.
(2018) showed Co0.5 dependence. If we take this into account,
the increase of αKM mostly vanishes.

Also the strongly growing αM contributes to the increase of
αKM. In our most rapidly rotating runs αM can locally even ex-
ceed the value of αK, as it is evident from Fig. 4. We see that
αM is mostly negative (positive) in the northern (southern) hemi-
sphere in the upper part of the convection zone, and positive
(negative) below, hence, it has the opposite sign of αK. The peak
values of αM are larger than αK for rapidly rotating runs, how-
ever, these locations are not those where αK is the strongest. This
leads to a more complicated distribution of αKM, where at high
latitudes in the middle of the convection zone, the sign of αKM

changes due to αM, but at low latitudes αKM is still dominated
by αK. Hence, in the most rapidly rotating cases the αKM pro-
files do not any longer match well with the test-field measured
profiles. The formula of Equation (11) have been introduced by

Pouquet et al. (1976) for cases, when αM is small and acts as a
perturbation to αK. In our case, in contrast, αM is even stronger
than αK at the some locations, so we cannot expect that this ex-
pression is valid in this regime. One possible inconsistency in
our approach is to regard the correlation times, τcor, of the kinetic
and magnetic parts of the α effect as equal. In reality, this might
not be the case, and our analysis should be refined. In any case,
our current results show that αKM, using the procedure adopted
here and very commonly by other authors analyzing their MHD
simulations, should be only used as a proxy of the α effect with
some caution.

Hence, in summary, we find from our simulations that
quenching of the α effect in terms of rotation can be mostly ex-
plained by the changes in the turbulent correlation length. In ad-
dition, we note that, due to the increasing magnetic to kinetic
energy ratio as function of rotation, we also could have mag-
netic quenching reducing the α effect. By comparing the HD and
MHD test-field measurements, however, we obtain very simi-
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Fig. 5. The kinetic αK and magnetic αM for three of the runs shown in
Fig. 4, which have a significant values of αM. All values are normalized
by α0 = u′rms/3.
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Fig. 2. Normalized differential rotation Ω/Ω! with Ω = Ω0 + uφ/r sin θ for Runs H0, H0.01, H0.1, H1, M4, M10, M30 and the rms values of
the radial r sin θ∂Ω/∂r and latitudinal shear sin ∂Ω/∂θ as versus Coriolis number Co. The value Ω has been calculated as a time average over the
saturated state. The zero rotation run have been moved to Co = 10−4 to be visible in the lower panel.

Fig. 3. Rotational dependency of meridional circulation and differential

rotation. In the first column we plot the meridional circulation Uθ at 25◦

latitude and the azimuthal mean velocity Uφ close to the surface r =
0.99 R as a function of Coriolis number Co at for the hydrodynamic runs
(Set H) in the top row and for the magnetohydrodynamic runs (Set M)
in the bottom row. The zero values are indicated with a white line.

ional circulation exhibits a thin equatorward flow near the sur-

face, whereas in the hydro runs, the meridional circulation is
purely one-cellular.

As we are mostly interested in the analysis of the dynamo
drivers in this runs, we next focus on how the shear acting of the
magnetic field changes with rotation rate. As shown in the lower
panel of Fig. 2, the latitudinal and radial shear averaged over the
whole convection zone increases for slow rotation, when the dif-
ferential rotation builds up. For the hydro runs, it has a maximum
for the anti-solar differential rotation runs, decreases during the
differential rotation transition. The radial differential has also a
maximum for solar-like differential rotation, while the latitudinal
differential stay roughly constant. For all hydro runs, the radial
differential rotation is 1.5 to 3 times larger than latidinal one,
where the largest differences is for the rapidly rotating runs. For
the magnetic runs, the latitudinal shear is roughly independent
with rotation rate, while the radial shear increase for the solar-
like differential rotation cases and decreases for rapidly rotating
runs. Also for the magnetic runs the radial shear is stronger than
the latitudinal one, except for the runs with Co = 20 and larger.
Hence, the increase of magnetic energy with rotation cannot be
explained by an increase of shear, as the shear either stays con-
stant or declines for large rotation rates.

3.3. Rotational dependencies of α

Next, we investigate the rotational dependence of α and we fo-
cus first on the general properties. For this we compute the traces
of the α tensor, αtr = αrr+αθθ+αφφ calculated with the test-field
method. For comparison, we also calculate α based on the ki-
netic and current helicity, following Steenbeck et al. (1966) and
Pouquet et al. (1976).

αK = −
τc

3
ω′ · u′, αM =

τc

3
j′ · b′/ρ, αKM = αK + αM (11)
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Fig. 5. The kinetic αK and magnetic αM for three of the runs shown in
Fig. 4, which have a significant values contribution of αM. All values
are normalized by α0 = u′rms/3.

Fig. 6. Radial inversion of αφφ as function of Coriolis number Co for
two latitudinal strips. In the first column we average αφφ for at low lat-
itudes ∆Θ1 = 10◦ − 20◦ latitudes and in the second over mid latitudes
∆Θ2 = 50◦ − 60◦. The zero values are indicated with a white line. All
values are normalized by α0 = u′rms/3.

The formula of Equation (11) have been introduced by
Pouquet et al. (1976) for cases, when αM is small and acts as

a perturbation to αK. In our case, in contrast, αM is even stronger
at the some locations, so clearly this expression is no valid any-
more. Also, that it is used to explain the quenching of the α effect
seems not be valid in our case. αK is quenched only in some lo-
cations, in other it is even enhanced. From our simulations, we
find that the quenching of the α effect in terms of rotation can
be mostly explained by the changes in the turbulent correlation
time than due to αM. However, we note here that the we have two
kinds of quenching as the same time, one is due to the rotation
itself and the other due to the increase of magnetic energy in the
system because of increasing rotation.

An dynamo wave following the Parker-Yoshimura rule
(Parker 1955; Yoshimura 1975), need to have a either negative
radial shear together with a positive αφφ or positive radial shear
together with a negative αφφ in the northern hemisphere to excite
an equatorward migrating wave like in the Sun. There, it is be-
lieved that αφφ is indeed positive in the norther hemisphere, how-
ever, the radial shear is only in the near-surface-shear layer nega-
tive and can potentially also excite a dynamo there (Brandenburg
2005). Hence, we want to investigate, if αφφ can changes sign
in the convection zone in our simulations, therefore give some
hints that solar magnetic field might be generated by a negative
αφφ and positive radial shear. Duarte et al. (2016) have shown
that this is possible in simulations of planetary dynamos. To in-
vestigate this we plot in Fig. 6 the radial distribution of αφφ for
two latitudinal bands at low (∆Θ1 = 10◦ − 20◦) and at mid lat-
itudes ∆Θ2 = 50◦ − 60◦). At low latitudes, the hydro runs are
inconclusive, but showing location of negative αφφ at mid lati-
tudes for Co = 10. In the magnetic runs, αφφ is always negative
in the lower third of the convection, for Co of 4 to 30 this re-
gion reaches up to the half of the convection zone. For the mid
latitudes, the region of negative αφφ is also located in the lower
third of the convection zone. We find a tendency that this region
increases for larger rotation. To conclude, we only find at low lat-
itudes for moderate rotation rate that αφφ is negative in the half of
the convection zone, otherwise it is contained to the lower third.
Hence, we do not see that αφφ becomes negative even close to
the surface as found by Duarte et al. (2016).

3.4. Anistropy of the α tensor

As a next step, we investigate the α tensor further by looking at
each of the diagonal components. For this, we shown in Fig. 7
the meridional profiles and the rms values of the diagonal com-
ponents of α. For slow rotation until Co = 0.7 the diagonal com-
ponents have similar strength, but for larger rotation they decou-
ple. αrr shows a distribution similar to αK, with positive (nega-
tive) values in the upper part of the convection zone and negative
(positive) values in the bottom of convection zone in the north-
ern (southern hemisphere), most strongest a low latitudes near
the surface. Only for the very high rotating runs (Runs M10 to
M30), we find a thin layer of opposite sign at the surface. αrr be-
comes the dominate component for moderate rotation (Co = 1 to
11), in particular in the hydro runs. For large rotation the values
of αrr becomes very weak.
αθθ have their strongest values also for moderate rotation

(Co = 1 to 11) with larger values in the hydro simulations, but
they never dominate the diagonal components of α. Interesting is
αθθ the only diagonal component, where the distribution changes
sign. For rotations of Co = 1.5 and below, the αθθ is dominantly
negative (positive) in the norther (southern) hemisphere at low
to mid latitudes. For higher rotation it becomes positive (nega-
tive) before it is nearly zero for very rapidly rotating runs. This
change was also reported by Viviani et al. (2019) by comparing
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Fig. 7. Rotational dependency of the diagonal α components. We show meridional profiles of αrr (top row), αθθ (second row), αφφ (third row) and
their rms values (bottom row), with αrr (black lines), αθθ (red) and αφφ (blue). As in Fig. 4 the values of the magnetic runs (Set M) are shown with
a dashed line with diamonds. All values are normalized by α0 = u′rms/3. The zero rotation run have been moved to Co = 10−4 to be visible in the
lower panel.

their run with Co = 2.8 to the run of Warnecke et al. (2018) with
Co = 8.3. At high latitudes the distribution is similar as for αK.
For high rotation αθθ becomes even weaker than αrr.

αφφ follows the sign distribution of αK for values of rota-
tion, except for zero rotation. However, their maximum values
move from the high latitudes to the low latitudes as the rota-
tions becomes stronger. Most interesting, while αrr dominates
the moderately rotating runs (Co = 1 to 11), αφφ dominates

for the rapidly rotating runs. For very high rotations, the peak
values are 3 to 4 times larger and the rms even 5 to 8 times
larger than for αrr and αφφ. This anisotropy of the α tensor
can be even better seen, if we remap the α tensor on cylindri-
cal coordinates (ρ, φ, z). Then, as shown in Fig. A.3, αzz be-
comes close to zero. This is in agreement with the theoretical
predictions (Krause & Rädler 1980) and in particular interest-
ing as Viviani et al. (2019) finds non-axisymmetric dynamo so-
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Fig. A.4. Mean azimuthal magnetic field Bφ as a function of time in years and latitude near the surface (r = 0.98R) for all runs. The time interval
shows the full duration of the saturated state for all runs. The black and white dashed horizontal line indicates the equator.
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Fig. 3. Magnetic power spectra for Run M7. (a) Spectra of the mean
radial magnetic field Br (solid) and the mean azimuthal magnetic field
Bφ (dashed) near the surface (r = 0.98; black), in the middle of the
convection zone (r = 0.85; red) and at the bottom of the convection

zone (r = 0.72; blue). (b) Spectra of Brms =

√
Br

2 + Bθ2 + Bφ2 near the
surface (r = 0.85; red) and averaged over radius (black). All spectra are
obtained for each latitude and then averaged. The peaks in a correspond
to magnetic cycle periods and in b to activity cycles periods. The solid
vertical lines indicate the cycle periods determined from the weighted
average of the spectra in a (Pcycl), the dashed lines indicate the cycle
periods determined from the weighted average of the spectra in b (P̃cycl).

Fig. 4. Cycle periods as a function of Coriolis number Co showing Pcycl

in black and P̃cycl orange. The green dashed line indicates a power law
fit of the Runs M4 to M15.

also found an increase of cycle period with increasing rotation,
however their power law fit reveals a much steeper increase with
rotation Pcycl ∝ P−1.06

rot . The cycle period calculated for Run M5
agrees with the cycle periods obtain for similar runs using the
D2 phase dispersion statistics and ensemble empirical mode de-
composition (Käpylä et al. 2016, 2017).

3.2. Cause of magnetic cycles

Earlier studies of similar simulations as Run M5 show that the
equatorward migrating mean magnetic field can be well ex-
plained with a Parker-Yoshimura (Parker 1955; Yoshimura 1975)
αΩ-dynamo wave propagating equatorward (Warnecke et al.

Fig. 5. Mean magnetic field, α effect and radial shear profiles for
Runs M1, M3, and M7. We show the rms mean azimuthal magnetic field
averaged over the saturate state Brms

φ (top row), αφφ determined with the
test-field method (middle row) and the radial shear r sin θ∂Ω/∂r (bot-
tom row). The dashed lines indicate the region for which we calculate
PPY.

2014, 2016, 2018). Following the calculation of Parker (1955)
and Yoshimura (1975), we can compute the cycle frequency of
the dynamo wave using (see also Stix 1976)

ωPY =

∣∣∣∣∣∣
αφφ kθ

2
r cos θ

∂Ω

∂r

∣∣∣∣∣∣

1/2

, (7)

where kθ is the latitudinal wave number. The corresponding ac-
tivity cycle period is then given by

PPY =
2π

2ωPY
. (8)

As pointed out by Warnecke et al. (2014), the location at which
we measure the shear and the αφφ is crucial to get a meaningful
result for the direction and therefore the period of the dynamo
wave. Following this work, we calculate PPY in the region where
i) Brms

φ = (〈B2
φ〉t)1/2 is large, in our case at least larger than the

half of the maximum value; ii) the radial shear ∂Ω/∂r is neg-
ative; and iii) αφφ is positive. The last two criteria are needed
to excite an equatorward migrating dynamo wave, following the
Parker-Yoshimura sign rule. To make sure that these drivers are
really responsible for exciting a dynamo wave at this location,
the production of azimuthal magnetic field must be large at this
location, leading to criterion i). The lower limit of half of the
maximum value is a reasonable choice; a slightly different value
has only little effect on the cycle period determination and on its
dependence on rotation rate. The criteria have been also success-
fully used to confirm Paker-Yoshimura dynamo waves in simi-
lar simulations (Warnecke et al. 2014, 2016, 2018; Käpylä et al.
2016). Using these criteria, we then average over these regions.
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by ∇ × (αBφêφ). Having now all transport coefficients at hand
allows us to investigate why the Parker-Yoshimura rule provides
such a good description. To show this, we focus on the mid-
latitude region where the shear is negative, causing the genera-
tion of equatorward migrating toroidal field Btor. There, the con-
tribution ∼ Br∇rΩ to the Ω effect dominates the generation of
the toroidal field. So the radial component is the important part
of the poloidal field in the dynamo wave. In Fig. 15(a) we plot
the contributions to the radial α effect A, named Ar , Aθ, and
Aφ and defined in the caption. The latitudinal α effect shows a
similar behavior. Obviously, the contribution related to αφφ (Aφ,
red line) is indeed dominant in the region where the toroidal field
and the negative shear are strong. Consequently, we now use αφφ
to determine the equatorward propagation direction:

ξmig(r, θ) ∼ −αφφêφ × ∇Ω. (12)

Figure 15(b) shows that the result is consistent with the actual
propagation direction.7 Using αK + αM instead of αφφ works for
this run only by chance as their signs are the same in the re-
gion of interest. However, in general, the Parker-Yoshimura rule
using αφφ will not always work as other components of α may
give more important contributions. Parker dynamo waves have
also been found in numerous Boussinesq (e.g., Busse & Simitev
2006; Schrinner et al. 2012) and anelastic dynamo simulations
(e.g., Gastine et al. 2012). In particular, in these studies, it was
found that the oscillation frequency can be well described by
a simplified dispersion relation of the Parker dynamo wave. To
show that the magnetic field propagation in our simulation is
consistent with a Parker dynamo wave, we estimate its period,
as described by Parker (1955) and Yoshimura (1975), using a
wave ansatz ∼ exp(ikθrθ − iωt) which leads to the frequency

ωPY =

∣∣∣∣∣∣
αφφ kθ

2
r cos θ

∂Ω

∂r

∣∣∣∣∣∣

1/2

, (13)

where we only consider latitudinal propagation. With kθr ≈ 1,
we obtain periods of two to four years in the region of interest,
which is close to the actual period of around five years. As in-
vestigated in detail by Käpylä et al. (2016a) and Olspert et al.
(2016) for a similar run, the main dynamo mode, present in the
upper and middle part of the convection zone, shows a strongly
variable cycle period that remains coherent only over two to five
cycles, with values of between four and eight years. The value
of kθ is a lower limit and a higher one might be more reason-
able, which would lead to a shorter period, while still retaining
the correct order of magnitude. Taking into account the strong
simplifications leading to Eq. (13), for example the neglect of
anisotropic contributions to α, the predicted period fits the ac-
tual one rather well.

4.9. Comparison with multidimensional regression method

In Brandenburg & Sokoloff (2002), a method for determining the
transport coefficients has been used which is based on the tem-
porally varying mean magnetic field of the dynamo (the main
run) alone (called BS method in the following). Instead of solv-
ing additional test problems with predefined mean fields as de-
scribed in Section 3, the method exploits the fact that at differ-
7 The rule does not exclude dynamo waves propagating along direc-
tions inclined with regards to the isocontours of Ω. The highest growth
rate, however, occurs for aligned propagation. We note that in the sat-
urated nonlinear stage, a kinematically subdominant mode may never-
theless be prevalent.

Fig. 16. α and γ determined via the reduced BS method as in Racine
et al. (2011); see also Fig. 17. We note that in αrr the extrema are actu-
ally ten times bigger than indicated in the color-bar.

ent times B at a given position has, in general, different direc-
tions. So using sufficiently many time instants, the underdeter-
mination of Eq. (6) can be overcome. One can go further and
employ any available instant ending up with a (usually heav-
ily) overdetermined system which can be solved approximately
by the least-squares technique or singular value decomposition.
An intrinsic problem emerges when B reaches dynamically rele-
vant strengths: Then the transport coefficients become dependent
on B and would be determined in a temporally averaged sense
where, however, it remains unclear to which strength of B their
values correspond. Clearly, the BS method does not allow to ob-
tain information on the time evolution of the transport coeffi-
cients. Furthermore, some of the coefficients calculated in Bran-
denburg & Sokoloff (2002) have turned out not to be in agree-
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Fig. 4. Cycle periods as a function of Coriolis number Co showing Pcycl

in black and P̃cycl in orange. The green dashed line indicates a power
law fit of the Runs M4 to M15.

Fig. 5. Mean magnetic field, α effect and radial shear profiles for
Runs M1, M3 and M7. We show the rms mean azimuthal magnetic field

averaged over the saturate state Brms
φ (top row), αφφ determined with the

test-field method (middle row) and the radial shear r sin θ∂Ω/∂r (bottom
row). The dashed lines indicate the region where we calculate PPY.

As pointed out by Warnecke et al. (2014), to get a meaningful
result for the direction and therefore the period of dynamo wave,
the location where measuring the shear and the αφφ is crucial.
Following this work, we calculate PPY in the region where a)

Brms
φ = (〈B2

φ〉t)
1/2 is large, in our case at least larger than the half

of the maximum value, b) the radial shear ∂Ω/∂r is negative and
c) αφφ is positive. We then average over these regions. In Fig. 5,
we show these regions for Run M1, M3 and M7. To calculate
PPY, we choose

kθ =
1

R(1 − 2Θ0/π),
= 1.2/R (9)

Fig. 6. (a) Comparison of the cycle periods Pcycl (black) and P̃cycl (or-
ange) with predicted cycle periods using a Parker-Yoshimura dynamo
wave PPY (blue) for Runs M4 to M15. The dashed blue line indicates
a power law fit to PPY. (b) Contributions to the Parker-Yoshimura dy-
namo wave containing the radial shear (black line; left y-axis) and αφφ
(red; right y-axis) for Runs M4 to M15. The dashed lines indicate the
corresponding power law fits.

where the factor 1 − 2Θ0/π takes into account the absent of the
poles in our simulations. However, the actually value of kθ will
only affect the value PPY with a −1/2 dependency, but not the
scaling with rotation.

In Table 1, we list all computed values for PPY in the eleventh
column and they agree well with the values of Pcycl and P̃cycl

for the runs with well determined cycles (M4 to M15). For os-
cillatory solution of planetary dynamos, Gastine et al. (2012)
found also a good agreement between rotational dependency of
measured and dynamo wave predicted cycle length. In Fig. 6a,
we show for these runs the cycle periods and the predicted
PPY. A power-law fit results in PPY ∝ Co0.5 which is close to
Pcycl ∝ Co0.23. Therefore, the Parker-Yoshimura dynamo wave
explains well the weakly dependency of cycle frequency with
rotation, we find for the moderately and rapidly rotating sim-
ulations. We now go a step further and check, which mecha-
nism of dynamo wave causes this rotational dependency. For this
we plot in Fig. 6b the rotational dependency of the radial shear
and α effect in terms of |r cos θ|∂Ω/∂r and αφφ; as for PPY both
quantities are averaged over the region of interests. The strength
of the shear strongly weakens for larger rotation, with an esti-
mated scaling of Co−1.46. For Run M15 the shear in the region
is just below zero explaining the mixture of equatorward and
poleward migration pattern shown in Fig. 2. For αφφ, we find

an increase with rotation corresponding to a scaling of Co0.6, so
much less than linear. The strong decrease in shear causes the
cycles to become larger with rotation: assuming a constant αφφ,

shear alone would leading a scaling of Pcycl ∝ Co0.73. The α-
effect on the other hand lead to a decrease of cycle length with
rotation; Pcycl ∝ Co−0.32. Because the increase of cycle length
due to shear is stronger than the decrease due to the α effect, the
resulting cycle length shows only a weak increase with rotation.
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In Fig. 5, we show these regions for Run M1, M3, and M7. To
calculate PPY, we choose

kθ =
1

R(1 − 2Θ0/π),
= 1.2/R, (9)

where the factor 1− 2Θ0/π takes into account the absence of the
poles in our simulations. However, the actually value of kθ only
affects the value PPY with a −1/2 dependency, but not the scaling
with rotation.

In Table 1, we list all computed values for PPY in Col. 11 and
these agree well with the values of Pcycl and P̃cycl for the runs
with well-determined cycles (M4 to M15). For oscillatory solu-
tion of planetary dynamos, Gastine et al. (2012) also found good
agreement between rotational dependency of measured and dy-
namo wave predicted cycle length. In Fig. 6a, we show for these
runs the cycle periods Pcycl and P̃cycl together with the predicted
period PPY. A power law fit results in PPY ∝ Co0.51±0.05, which
is close to Pcycl ∝ Co0.25±0.04. Therefore, the Parker-Yoshimura
dynamo wave explains well the weakly dependency of cycle fre-
quency with rotation that we find for the moderately and rapidly
rotating simulations. We now go a step further and check which
driver of the dynamo wave causes this rotational dependency.
For this we plot in Fig. 6b the rotational dependency of the ra-
dial shear and α effect in terms of |r cos θ|∂Ω/∂r and αφφ; as for
PPY both quantities are averaged over the region of interest. The
strength of the shear strongly weakens for larger rotation with
an estimated scaling of Co−1.33±0.18. For Run M15 the shear in
the region is just below zero explaining the mixture of equa-
torward and poleward migration pattern shown in Fig. 2. For
αφφ, we find an increase with rotation corresponding to a scal-
ing of Co0.70±0.25, so much less than linear. The strong decrease
in shear causes the cycles to become larger with rotation; as-
suming a constant αφφ, shear alone would leading a scaling of
Pcycl ∝ Co0.67±0.09. The α effect, on the other hand, leads to a de-
crease of cycle length with rotation; that is, Pcycl ∝ Co−0.35±0.12.
Because the increase of cycle length due to shear is stronger than
the decrease due to the α effect, the resulting cycle length shows
only a weak increase with rotation.

The surprising issue with the interpretation of the magnetic
field evolution as a Parker-Yoshimura dynamo wave is that for
runs rotating slower than the M4 (Co = 6.5) it fails. Equation (7)
for these runs predict cycle periods of similar length as for the
more rapidly rotating runs, but the actual magnetic field shows
no clear cyclic evolution. For example, Run M3 shows similar
condition for a dynamo wave as in Run M7; there exists a lo-
calized region, in which the mean toroidal field is strong, αφφ is
positive, and the shear is negative; see Fig. 5. In the simulations
with antisolar differential rotation (Run M0.5 to M2), we find in-
stead a more extended region of strong mean toroidal field, pos-
itive αφφ and negative shear, however strength of the shear and
the α effect should be sufficient to excite an αΩ dynamo wave.
One of the reasons for the absence of an αΩ dynamo wave can be
the larger turbulent magnetic diffusion due to higher convective
velocities as shown in Fig. 9. This is in agreement with previous
studies of rotating convection in Cartesian boxes (Käpylä et al.
2009). To make a reliable statement, whether a αΩ dynamo is
actually operating in these simulations and the reason for not
exciting dynamo wave need to be studied in more detail using
all the turbulent transport coefficients. We will postpone such a
study for the future.

We can now also interpret the scaling of the shear and the
α effect in terms of mean-field models (e.g., Krause & Rädler
1980; Rüdiger 1989). From models of differential rotation, one

Fig. 6. (a) Comparison of the cycle periods Pcycl (black) and P̃cycl (or-
ange) with predicted cycle periods using a Parker-Yoshimura dynamo
wave PPY (blue) for Runs M4 to M15. The dashed blue line indicates
a power law fit to PPY. (b) Contributions to the Parker-Yoshimura dy-
namo wave containing the radial shear (black line; left y-axis) and αφφ
(red; right y-axis) for Runs M4 to M15. The dashed lines indicate the
corresponding power law fits.

typically finds that the absolute radial and latitudinal differen-
tial rotation stays nearly constant for increasing rotation (e.g.,
Kitchatinov & Rüdiger 1999); this disagrees with our findings.
However, we stress that these models take the latitudinal aver-
aged values at the bottom and surface to compute the radial dif-
ferential rotation, whereas we compute the local radial shear in
the region of interest. In mean-field dynamo models αφφ is re-
lated to the mean kinetic helicity u′∇ × u′ and therefore can be
linear related to the Ω. Taking the convective turnover time τc
into account as well leads to scaling of αφφ ∝ Co for weak rota-
tion. (e.g., Krause & Rädler 1980). As shown in Warnecke et al.
(2018), approximating the diagonal α components with αK =

−1/3τc u′∇ × u′ is not correct and can lead to the overestima-
tion of αφφ. Indeed, we find αφφ in the region of interest depends
weaker on rotation as predicted from mean-field models. The
overall scaling of αφφ averaged of the simulations might be dif-
ferent, but the import value of αφφ determining the cycle period
comes from this region. Warnecke et al. (2018) also took into ac-
count the nonlinear quenching of the α effect due to magnetic he-
licity conservation (see Brandenburg & Subramanian 2005, for
details) and use the form introduced by Pouquet et al. (1976)
α = −1/3τc u′ · ∇ × u′ + 1/3τc/ρ∇ × b′ · b′, but still could not
find an agreement with the actual measured αφφ; see Fig. 1 and
2 of Warnecke et al. (2018).

Furthermore, we plot the ratio of rotation period and cy-
cle period Prot/Pcycl over Coriolis number (see Fig. 7). We find
a scaling of Prot/Pcycl ∝ Co−0.98±0.04 for the runs with well-
determined cycles. This scaling fits well with the cycle period
predicted by a dynamo wave. Interestingly, Run M0.5 fit well to
this relation, even though we find no polarity reversals there. In
the interpretation of stellar observation, Prot/Pcycl is often used
to determine the quenching of the α effect. If one assumes a
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Fig. A.3. Mean azimuthal magnetic field Bφ as a function of time in years and latitude near the surface (r = 0.98R) for all runs. The time interval
shows the full duration of the saturated state for all runs. The black and white dashed horizontal line indicates the equator.
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Fig. A.3. Mean azimuthal magnetic field Bφ as a function of time in years and latitude near the surface (r = 0.98R) for all runs. The time interval
shows the full duration of the saturated state for all runs. The black and white dashed horizontal line indicates the equator.
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Mean-field model vs. DNS2 Warnecke et al.

Figure 1. Time-latitiude (butterfly) diagrams of mean radial, Br, and azimuthal, B�, magnetic field from GCD (top) and
the MF model (bottom) at fractional radius 0.95. The right panel shows a zoom-in to the first five years of the middle panel.
The TTC are symmetrized, and ↵ is scaled by 1.5, while exponential growth has been compensated for clarity. The color range
is cut to make the northern hemisphere more visible. Black lines: zero contours of B� from the MF model at the same time.
Supplementary material includes butterfly diagrams of the corresponding pure parity solutions, and additional discussion on
the limitations of the linear MF model.

ber1 and a Rayleigh number two orders of magnitude65

larger than the critical one for the onset of convection66

(Warnecke et al. 2018). The axisymmetric (azimuthally67

averaged) part of the generated magnetic field shows68

rather regular oscillations with a magnetic cycle period69

Pcyc = PGCD
cyc ⌘ 4.4±0.6 years (Warnecke 2018), and ex-70

hibits both equatorward and poleward branches of field71

migration in the butterfly (time-latitude) diagram, thus72

capturing main solar cycle features, see Figure 1. A73

second, weaker dynamo mode with a much shorter pe-74

riod of about 0.11 years is present at low latitudes near75

the surface, see Figure 1 and Käpylä et al. (2016) for a76

detailed discussion.77

Our MF approach employs azimuthal averaging, in-78

dicated by an overbar, which adheres to the Reynolds79

rules; fluctuating fields are indicated by primes. The80

MF induction equation reads81

@tB = r⇥
�
U ⇥B + E

�
�r⇥ ⌘r⇥B, (1)82

where U and B are mean flow and mean magnetic field,83

respectively, and ⌘ is the magnetic di↵usivity. To estab-84

lish the MF model, a parameterization of the mean elec-85

tromotive force E = u0 ⇥B0 in terms of the mean field86

1 The Coriolis number is defined as ⌦�R/⇡urms with the overall
angular frequency ⌦, the volume integrated root mean square
velocity urms and the thickness of the convective shell �R. For
the Coriolis number of the Sun, see e.g. Saar & Brandenburg
(1999).

itself is crucial. Employing Taylor expansion, leaving87

out time derivatives and restricting to first-order spatial88

derivatives, a commonly quoted ansatz reads (Krause &89

Rädler 1980)90

E = ↵·B+�⇥B��·
�
r⇥B

�
��⇥

�
r⇥B

�
�·

�
rB

�(s)
,

(2)91

where (rB)(s) is the symmetric part of the (covariant)92

derivative tensor of B. The most general representation93

of E at some position (r, ✓) and time t would involve94

a convolution integral over a neighbourhood of (r, ✓, t),95

thus covering non-local and memory e↵ects. In contrast,96

Eq. (2) is completely instantaneous in time and only97

rudimentarily non-local in space.98

↵ and � are symmetric rank-two tensors, � and �99

are vectors, and  is a rank-three tensor, with symme-100

try ijk = ikj . These five tensors can be associated101

with di↵erent turbulent e↵ects important for the mag-102

netic field evolution: the ↵ e↵ect (Steenbeck et al. 1966)103

can lead to field amplification via helical flows, the �104

e↵ect describes turbulent pumping of the mean mag-105

netic field. � describes turbulent di↵usion; and the �,106

or Rädler e↵ect (Rädler 1969), can lead to dynamo ac-107

tion in the presence of, e.g., ↵ e↵ect or shear, but not108

alone (Brandenburg & Subramanian 2005). The phys-109

ical interpretation of  is yet unclear, but quite gener-110

ally it may contribute to both amplification and di↵u-111

sion of B. Accounting for all symmetries in Eq. (2) and112

@�Br,✓,� = 0, a total of 27 coe�cients must be identified113

to close Eq. (1). Note, that due to the axisymmetry of114

DNS

MF

Very good agreement of  MF model with DNS: 
(Period and Pattern)

Full spectrum of  effects needed 

Simple dynamo models may not viable 

Warnecke et al. 2021 
Submitted 

arXiv:2105.07708



11th of  June 2021 Advanced Study Program on Helicities in Astrophysics and Beyond 25

Magnetic helicity  
in convective dynamo simulation

r=0.98 R r=0.98 R
M5: Co=8.63

PRACE (Non-TF) run summeries

June 11, 2021

• Investiagte the small-scale (SSD) and large-scale dynamo (LSD) interation

• Influence of SSD on di↵erential rotation and meridional circurlation.

• E↵ect of SSD on turbulent transport coe�cients (later..)

• Magneto-convection with more realistic parameters (lower di↵usivities).

• E↵ect of Kramers opacity heatconductivity on convection in a more realitic parameter regime.

A ·B (1)

a · b (2)

Table 1: Summary of runs. Second to fith columns: input parameters. Columns 5 to 15 show the output

parameters, which are calculated from the saturated stage of the simulations. SSD and LSD indicates,

wheather a SSD or LSD is active or not. The energies E are given in 10
5
J/m

2
and. density contrast is

define as �⇢ ⌘ ⇢(r = 0.7R)/⇢(R), PrSGS = 1 and the MHD runs (Set M) PrM = 1.

Run Resolution ⌦̃ Ta[10
8
] Ra[10

6
] Pr Re Co �⇢ SSD LSD

A0 128⇥ 256⇥ 128 5 1.25 1.68 11 21 13.4 26 N Y

A0H 128⇥ 256⇥ 128 5 1.25 1.68 11 22 12.7 26 N N

A1 256⇥ 512⇥ 256 5 5.00 ? 2.5 55 10.2 25 N Y
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where we add the two diffusivities to a total diffusivity hT = ht +h . The tur-
bulent diffusivity ht in general increases the diffusion of the magnetic field and
hence cannot contribute to a dynamo effect, but there can also be exceptions
(see e.g. Devlen et al., 2012, where a case with hT < 0 was found). With a zero
mean velocity field, the term ———⇥

�
aBBB

�
, called the a-effect, is the only effect

capable of amplifying a magnetic field (Steenbeck et al., 1966). For homoge-
neous and isotropic turbulence, a can be expressed by (see e.g. Pouquet et al.,
1976)

a =�1
3

tcwww 0 ·uuu0+ 1
3

tc

r
JJJ0 ·BBB0 = aK +aM, (3.19)

where tc is the turbulent correlation time, www 0 = ———⇥ uuu0 is the fluctuating vor-
ticity. aK is the kinetic, and aM the magnetic part of a , which can provide
an important feedback of the mean magnetic field on a . If a and hT are con-
stant in space, we can move them in front of the derivatives. If we additionally
assume axisymmetry in spherical coordinates along the v-axis (v = r sinq ,
∂

∂f = 0), we can divide the mean magnetic field in a poloidal and toroidal part
BBB = BBBpol +BBBtor with BBBpol =

�
Br,Bq ,0

�
and BBBtor =

�
0,0,Bf

�
. Then we can

decompose the mean-field induction equation in two separate equations:

∂BBBpol

∂ t
= a———⇥BBBtor +hTDBBBpol (3.20)

∂BBBtor

∂ t
= a———⇥BBBpol +hTDBBBtor, (3.21)

where we have used Eq. (3.3). Here we can see, why this dynamo is called a2-
dynamo. The toroidal field gets amplified by the a-effect from the poloidal
field and the poloidal field gets amplified by the a-effect from the toroidal
field.

3.2.2 a–W-dynamo

Now we consider an additional mean flow, and Eq. (3.18) will change to

∂BBB
∂ t

= ———⇥
�
uuu⇥BBB

�
+———⇥

�
aBBB

�
�———⇥

�
hT———⇥BBB

�
. (3.22)

Applying now a mean flow uuu = uuutor = (0,0,Wv), which corresponds to a ro-
tation with angular velocity W and using similar assumptions as above, we can
also write two separate equations

∂BBBpol

∂ t
= a———⇥BBBtor +hTDBBBpol (3.23)

∂BBBtor

∂ t
= ———⇥

�
uuutor ⇥BBBpol

�
+a———⇥BBBpol +hTDBBBtor, (3.24)

33

where Beq is the magnetic equipartition field strength, i.e. a magnetic field,
whose energy is equal to kinetic energy. The expression (3.32) is also called
the dynamical quenching formula and describes an important issue of the dy-
namo theory. For high magnetic Reynolds numbers ReM, the a-effect is catas-
trophically quenched (see e.g. Vainshtein and Cattaneo, 1992; Cattaneo and
Hughes, 1996; Brandenburg and Dobler, 2001). This can be seen by setting
the left-hand side of Eq. (3.32) to zero and using aM = a �aK

a =
aK +ReM

⇣
htJJJ ·BBB� 1

2 ——— ·FFF f
h

⌘
/B2

eq

1+ReMBBB2
/B2

eq

(3.34)

For high magnetic Reynolds numbers and vanishing flux, the second term bal-
ances with aK to a zero a . However, it is important that the mean magnetic
helicity flux also enters into this equation. If FFF f

h is negative and large enough
it can suppress the quenching (Blackman and Field, 2000). It has been seen
in several numerical simulations of dynamos (Brandenburg and Subramanian,
2005; Mitra et al., 2011; Del Sordo et al., 2013) that if one allows for mag-
netic helicity fluxes, the catastrophic quenching is suppressed. The behavior is
one of the motivations for using a combined model of a convection zone and
a corona as in Papers I to V. An open boundary of a dynamo domain allows
magnetic helicity fluxes to escape and alleviates the catastrophic quenching at
high Reynolds numbers.

36

Magnetic helicity fluxes

Pouquet et al. 1976

Kleeorin & Ruzmaikin 1982

Vainshtein & Cattaneo 1992 

Based on assumption, which might be not true  
in complex systems
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Fig. 15. Time evolution of the magnetic helicity flux of the large-scale
field, smooth over two data points. Here, the mean of magnetic helic-
ity flux out through the surface of the northern hemisphere (black) is
shown, together with that through the southern hemisphere (dotted red),
and the equator (dashed blue).

out that a major part of the flux goes through the equator. The
part of the magnetic helicity flux that goes through the surface is
about 20% of ηtB2

eq. However, the magnetic helicity flux should
primarily depend on B rather than Beq. In the present simula-
tions, where the dynamo works with a fully helical field, the two
are comparable. This is not the case in the Sun, where the esti-
mated field strength is expected to be about 300 G (Brandenburg
2009). Thus, to compare with the Sun, a more reasonable guess
for the magnetic helicity flux would be about 20% of ηt B2.
Integrating this over one hemisphere and multiplying this with
the 11 year cycle time, we find the total magnetic helicity loss
to be 2πR2ηtB2Tcyc, which corresponds to 5 × 1047 Mx2 if we
use ηt = 3 × 1012 cm2 s−1. This value exceeds the estimated up-
per limit for the solar dynamo of about 1046 Mx2 per cycle given
by Brandenburg (2009). However the estimate by Brandenburg
(2009) is based on an αΩ dynamo model with α effect and shear
that yield a period comparable with the 11 year period of the
Sun. Therefore, the discrepancy with the present model, where
shear plays no role, should not be surprising. Instead, it tells us
that a dynamo without shear has to shed even more magnetic
helicity than one with shear.

The magnetic helicity flux of the large-scale field may not
a priori be gauge-invariant. However, the system is in a statis-
tically steady state and, in addition, the magnetic helicity inte-
grated over each cycle is constant. In that case the divergence of
the magnetic helicity flux is also gauge-invariant. Furthermore,
the shell-integrated magnetic helicity cannot have a rotational
component and is therefore uniquely defined. In Fig. 15 we plot
this flux and see that its maxima tend to occur about 50 turnover
times after magnetic field maxima; see Figs. 4 and 5. The helicity
flux of the small-scale field does not show a clear behavior. Since
the ejections appear to be related to the magnetic field strength
in this way, one might conclude that the magnetic helicity flux of
the large-scale field is transported through these ejections. This
result is somewhat unexpected and deserves to be reexamined
more thoroughly in future simulations where cycle and ejection
frequencies are clearly different from each other.

Next, let us look at the magnetic helicity flux of the small-
scale field. On earlier occasions, Mitra et al. (2010b) and
Hubbard & Brandenburg (2010) have been able to describe the
resulting magnetic helicity flux by a Fickian diffusion ansatz of
the form Ff = −κh∇hf , where κh/ηt0 was found to be 0.3 and 0.1,
respectively. In Fig. 17 we show that the present data allow a
similar representation, although the uncertainty is large. It turns

Fig. 16. Cumulative mean of the time evolution of the magnetic helicity
flux of the small-scale field, Ff = e × a, normalized by ηtB2

eq, where
ηt ≈ ηt0 ≡ urms/3kf was defined in Sect. 3.1. Here, the mean of magnetic
helicity flux out through the surface of the northern hemisphere (black)
is shown, together with that through the southern hemisphere (dotted
red), and the equator (dashed blue).

Fig. 17. Dependence of the latitudinal component of the magnetic he-
licity flux, F

f
θ, compared with the latitudinal gradient of the magnetic

helicity density of the small-scale field, ∇θhf , at r/R = 0.85. The large-
scale variation of the latter agrees with that of the former if the gradient
is multiplied by an effective diffusion coefficient for magnetic helicity
of κt ≈ 3ηt0.

out that κh/ηt0 is about 3, suggesting thus that turbulent mag-
netic helicity exchange across the equator can be rather efficient.
Such an efficient transport of magnetic helicity out of the dy-
namo region is known to be beneficial for the dynamo in that
it alleviates catastrophic quenching (Blackman & Brandenburg
2003). In this sense, the inclusion of CME-like phenomena is
not only interesting in its own right, but it has important benefi-
cial consequences for the dynamo itself in that it models a more
realistic outer boundary condition.

3.8. Comparison with solar wind data

Our results suggest a reversal of the sign of magnetic helicity
between the inner and outer parts of the computational domain.
This is in fact in agreement with recent attempts to measure mag-
netic helicity in the solar wind (Brandenburg et al. 2011). They
used the Taylor hypothesis to relate temporal fluctuations of the
magnetic field to spatial variations by using the fact that the tur-
bulence is swept past the space craft with the mean solar wind.
This idea can in principle also be applied to the present simu-
lations, provided we use the obtained mean ejection speed Vej
(see Table 1) for translating temporal variations (in t) into spa-
tial ones (in r) via r = r0 − Vejt. Under the assumption of homo-
geneity, one can then estimate the magnetic helicity spectrum as
H(k) = 4 Im(B̂θB̂&φ )/k; see Matthaeus et al. (1982) and Eq. (9) of

A11, page 8 of 10
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Figure 9. Scaling properties of the vertical slopes of 2E · B, −2ηµ0 j · b
and −∇ · F f for models W1–W5 (upper panel) and for models S1–S6
(lower panel). (Given that the three quantities vary approximately linearly
with z, the three labels indicate their non-dimensional values at k1z = 1.)
The second panel shows that for a stronger wind the contribution from the
advective term becomes approximately independent of Rm for Rm > 170
(blue line), while that of the resistive term decreases approximately like
Rm−2/3 (red line) and 2E · B decreases approximately like Rm−1/2 (black
line).

Table 3. Additional parameters of the simulations including Rm, magnetic
diffusivity, the ratios ‘B/u’ (= Brms/urms) and ‘B/b’ (= Brms/brms), as
well as Mach number and number of mesh points. Nx indicates the number
of mesh points in the x direction. (In all cases we have Ny = Nx and Nz =
2Nx.)

Model Rm ηk1/cs ‘B/u’ ‘B/b’ Ma Nx

T1 9 5.0 × 10−3 0.58 1.13 0.18 64
T2 23 2.0 × 10−3 0.48 0.87 0.19 64
N1 37 1.0 × 10−3 0.53 0.70 0.15 64
N2 81 5.0 × 10−4 0.58 0.73 0.16 128
N3 206 2.0 × 10−4 0.27 0.33 0.17 256
N4 397 1.0 × 10−4 0.27 0.33 0.16 512
N5 722 5.0 × 10−5 0.18 0.21 0.15 1024
N6 1073 2.5 × 10−5 0.11 0.15 0.11 1024
W1 24 1.0 × 10−3 0.61 0.69 0.10 128
W2 51 5.0 × 10−4 0.42 0.48 0.10 128
W3 129 2.0 × 10−4 0.36 0.39 0.10 256
W4 265 1.0 × 10−4 0.28 0.31 0.11 512
W5 540 5.0 × 10−5 0.19 0.22 0.11 1024
M2 51 5.0 × 10−4 0.36 0.45 0.10 128
S1 24 1.0 × 10−3 0.40 0.55 0.10 64
S2 51 5.0 × 10−4 0.31 0.42 0.10 128
S3 133 2.0 × 10−4 0.20 0.27 0.11 256
S4 271 1.0 × 10−4 0.17 0.23 0.11 512
S5 548 5.0 × 10−5 0.15 0.19 0.11 1024
S6 1063 2.5 × 10−5 0.14 0.17 0.11 1024
I1 26 1.0 × 10−3 0.18 0.36 0.10 64
I2 55 5.0 × 10−4 0.13 0.26 0.11 128

The numerical resolution in the x direction, Nx, is given in the last
column. This is also the resolution used in the y direction, while
that in the z direction is always twice as large.

4 C O N C L U S I O N S

In the present work, we have examined the effects of an advective
magnetic helicity flux in DNS of a turbulent dynamo. The present
simulations without shear yield an oscillatory large-scale field ow-
ing to the spatially varying kinetic helicity profile with respect to
the equatorial plane. We emphasize in this context that the possi-
bility of oscillatory dynamos of α2 type is not new (Baryshnikova
& Shukurov 1987; Rädler & Bräuer 1987), but until recently all
known examples were restricted to spherical shell dynamos where
α changes sign in the radial direction. The example found by Mitra
et al. (2010b) applies to a spherical wedge with latitudinal variation
of α changing sign about the equator. Similar results have also been
obtained in a mean-field dynamo with a linear variation of α(z) ∝ z
(Brandenburg et al. 2009). Our present simulations are probably the
first DNS of such a dynamo in Cartesian geometry. Closest to our
simulations are those of MCCTB who used perfectly conducting
outer boundary conditions without wind, and also found oscillatory
solutions. Surprisingly, however, oscillations are here only obtained
if there is at least a slight outflow.

One would have expected that catastrophic quenching can be
alleviated if magnetic helicity is removed from the domain at a
rate larger than its diffusion rate, that is, the advective term ∇ · F f

dominates over the resistive term, 2ηµ0 j · b. Fig. 9 shows that,
for Rm ! 200, the latter term decreases linearly with decreasing
η, while the former only decreases proportional to η1/2, i.e. pro-
portional to Rm−1/2. This would have led us to the estimate that
for Rm ≈ 4 × 103 the catastrophic quenching can be alleviated
by a wind with SW ≈ 0.005. Our new results suggest that this can
happen already for smaller values of Rm. The reason for this is still
unclear. It is possible that catastrophic quenching was an artefact of
intermediate values of Rm, as suggested by Hubbard & Branden-
burg (2012), or that a magnetic helicity flux can have an effect even
though it is weak compared with diffusive terms.

Finally, we should emphasize that we have only examined here
the case of subsonic advection. In real astrophysical cases, like
galactic and stellar winds, the outflow is instead supersonic and can,
thus, play an even more important role in alleviating the catastrophic
quenching through the advection of magnetic helicity. This assumes,
of course, that the dynamo is strong enough to be still excited in the
presence of a stronger wind.
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Fig. 15. Time evolution of the magnetic helicity flux of the large-scale
field, smooth over two data points. Here, the mean of magnetic helic-
ity flux out through the surface of the northern hemisphere (black) is
shown, together with that through the southern hemisphere (dotted red),
and the equator (dashed blue).

out that a major part of the flux goes through the equator. The
part of the magnetic helicity flux that goes through the surface is
about 20% of ηtB2

eq. However, the magnetic helicity flux should
primarily depend on B rather than Beq. In the present simula-
tions, where the dynamo works with a fully helical field, the two
are comparable. This is not the case in the Sun, where the esti-
mated field strength is expected to be about 300 G (Brandenburg
2009). Thus, to compare with the Sun, a more reasonable guess
for the magnetic helicity flux would be about 20% of ηt B2.
Integrating this over one hemisphere and multiplying this with
the 11 year cycle time, we find the total magnetic helicity loss
to be 2πR2ηtB2Tcyc, which corresponds to 5 × 1047 Mx2 if we
use ηt = 3 × 1012 cm2 s−1. This value exceeds the estimated up-
per limit for the solar dynamo of about 1046 Mx2 per cycle given
by Brandenburg (2009). However the estimate by Brandenburg
(2009) is based on an αΩ dynamo model with α effect and shear
that yield a period comparable with the 11 year period of the
Sun. Therefore, the discrepancy with the present model, where
shear plays no role, should not be surprising. Instead, it tells us
that a dynamo without shear has to shed even more magnetic
helicity than one with shear.

The magnetic helicity flux of the large-scale field may not
a priori be gauge-invariant. However, the system is in a statis-
tically steady state and, in addition, the magnetic helicity inte-
grated over each cycle is constant. In that case the divergence of
the magnetic helicity flux is also gauge-invariant. Furthermore,
the shell-integrated magnetic helicity cannot have a rotational
component and is therefore uniquely defined. In Fig. 15 we plot
this flux and see that its maxima tend to occur about 50 turnover
times after magnetic field maxima; see Figs. 4 and 5. The helicity
flux of the small-scale field does not show a clear behavior. Since
the ejections appear to be related to the magnetic field strength
in this way, one might conclude that the magnetic helicity flux of
the large-scale field is transported through these ejections. This
result is somewhat unexpected and deserves to be reexamined
more thoroughly in future simulations where cycle and ejection
frequencies are clearly different from each other.

Next, let us look at the magnetic helicity flux of the small-
scale field. On earlier occasions, Mitra et al. (2010b) and
Hubbard & Brandenburg (2010) have been able to describe the
resulting magnetic helicity flux by a Fickian diffusion ansatz of
the form Ff = −κh∇hf , where κh/ηt0 was found to be 0.3 and 0.1,
respectively. In Fig. 17 we show that the present data allow a
similar representation, although the uncertainty is large. It turns

Fig. 16. Cumulative mean of the time evolution of the magnetic helicity
flux of the small-scale field, Ff = e × a, normalized by ηtB2

eq, where
ηt ≈ ηt0 ≡ urms/3kf was defined in Sect. 3.1. Here, the mean of magnetic
helicity flux out through the surface of the northern hemisphere (black)
is shown, together with that through the southern hemisphere (dotted
red), and the equator (dashed blue).

Fig. 17. Dependence of the latitudinal component of the magnetic he-
licity flux, F

f
θ, compared with the latitudinal gradient of the magnetic

helicity density of the small-scale field, ∇θhf , at r/R = 0.85. The large-
scale variation of the latter agrees with that of the former if the gradient
is multiplied by an effective diffusion coefficient for magnetic helicity
of κt ≈ 3ηt0.

out that κh/ηt0 is about 3, suggesting thus that turbulent mag-
netic helicity exchange across the equator can be rather efficient.
Such an efficient transport of magnetic helicity out of the dy-
namo region is known to be beneficial for the dynamo in that
it alleviates catastrophic quenching (Blackman & Brandenburg
2003). In this sense, the inclusion of CME-like phenomena is
not only interesting in its own right, but it has important benefi-
cial consequences for the dynamo itself in that it models a more
realistic outer boundary condition.

3.8. Comparison with solar wind data

Our results suggest a reversal of the sign of magnetic helicity
between the inner and outer parts of the computational domain.
This is in fact in agreement with recent attempts to measure mag-
netic helicity in the solar wind (Brandenburg et al. 2011). They
used the Taylor hypothesis to relate temporal fluctuations of the
magnetic field to spatial variations by using the fact that the tur-
bulence is swept past the space craft with the mean solar wind.
This idea can in principle also be applied to the present simu-
lations, provided we use the obtained mean ejection speed Vej
(see Table 1) for translating temporal variations (in t) into spa-
tial ones (in r) via r = r0 − Vejt. Under the assumption of homo-
geneity, one can then estimate the magnetic helicity spectrum as
H(k) = 4 Im(B̂θB̂&φ )/k; see Matthaeus et al. (1982) and Eq. (9) of
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Fig. 15. Time evolution of the magnetic helicity flux of the large-scale
field, smooth over two data points. Here, the mean of magnetic helic-
ity flux out through the surface of the northern hemisphere (black) is
shown, together with that through the southern hemisphere (dotted red),
and the equator (dashed blue).

out that a major part of the flux goes through the equator. The
part of the magnetic helicity flux that goes through the surface is
about 20% of ηtB2

eq. However, the magnetic helicity flux should
primarily depend on B rather than Beq. In the present simula-
tions, where the dynamo works with a fully helical field, the two
are comparable. This is not the case in the Sun, where the esti-
mated field strength is expected to be about 300 G (Brandenburg
2009). Thus, to compare with the Sun, a more reasonable guess
for the magnetic helicity flux would be about 20% of ηt B2.
Integrating this over one hemisphere and multiplying this with
the 11 year cycle time, we find the total magnetic helicity loss
to be 2πR2ηtB2Tcyc, which corresponds to 5 × 1047 Mx2 if we
use ηt = 3 × 1012 cm2 s−1. This value exceeds the estimated up-
per limit for the solar dynamo of about 1046 Mx2 per cycle given
by Brandenburg (2009). However the estimate by Brandenburg
(2009) is based on an αΩ dynamo model with α effect and shear
that yield a period comparable with the 11 year period of the
Sun. Therefore, the discrepancy with the present model, where
shear plays no role, should not be surprising. Instead, it tells us
that a dynamo without shear has to shed even more magnetic
helicity than one with shear.

The magnetic helicity flux of the large-scale field may not
a priori be gauge-invariant. However, the system is in a statis-
tically steady state and, in addition, the magnetic helicity inte-
grated over each cycle is constant. In that case the divergence of
the magnetic helicity flux is also gauge-invariant. Furthermore,
the shell-integrated magnetic helicity cannot have a rotational
component and is therefore uniquely defined. In Fig. 15 we plot
this flux and see that its maxima tend to occur about 50 turnover
times after magnetic field maxima; see Figs. 4 and 5. The helicity
flux of the small-scale field does not show a clear behavior. Since
the ejections appear to be related to the magnetic field strength
in this way, one might conclude that the magnetic helicity flux of
the large-scale field is transported through these ejections. This
result is somewhat unexpected and deserves to be reexamined
more thoroughly in future simulations where cycle and ejection
frequencies are clearly different from each other.

Next, let us look at the magnetic helicity flux of the small-
scale field. On earlier occasions, Mitra et al. (2010b) and
Hubbard & Brandenburg (2010) have been able to describe the
resulting magnetic helicity flux by a Fickian diffusion ansatz of
the form Ff = −κh∇hf , where κh/ηt0 was found to be 0.3 and 0.1,
respectively. In Fig. 17 we show that the present data allow a
similar representation, although the uncertainty is large. It turns

Fig. 16. Cumulative mean of the time evolution of the magnetic helicity
flux of the small-scale field, Ff = e × a, normalized by ηtB2

eq, where
ηt ≈ ηt0 ≡ urms/3kf was defined in Sect. 3.1. Here, the mean of magnetic
helicity flux out through the surface of the northern hemisphere (black)
is shown, together with that through the southern hemisphere (dotted
red), and the equator (dashed blue).

Fig. 17. Dependence of the latitudinal component of the magnetic he-
licity flux, F

f
θ, compared with the latitudinal gradient of the magnetic

helicity density of the small-scale field, ∇θhf , at r/R = 0.85. The large-
scale variation of the latter agrees with that of the former if the gradient
is multiplied by an effective diffusion coefficient for magnetic helicity
of κt ≈ 3ηt0.

out that κh/ηt0 is about 3, suggesting thus that turbulent mag-
netic helicity exchange across the equator can be rather efficient.
Such an efficient transport of magnetic helicity out of the dy-
namo region is known to be beneficial for the dynamo in that
it alleviates catastrophic quenching (Blackman & Brandenburg
2003). In this sense, the inclusion of CME-like phenomena is
not only interesting in its own right, but it has important benefi-
cial consequences for the dynamo itself in that it models a more
realistic outer boundary condition.

3.8. Comparison with solar wind data

Our results suggest a reversal of the sign of magnetic helicity
between the inner and outer parts of the computational domain.
This is in fact in agreement with recent attempts to measure mag-
netic helicity in the solar wind (Brandenburg et al. 2011). They
used the Taylor hypothesis to relate temporal fluctuations of the
magnetic field to spatial variations by using the fact that the tur-
bulence is swept past the space craft with the mean solar wind.
This idea can in principle also be applied to the present simu-
lations, provided we use the obtained mean ejection speed Vej
(see Table 1) for translating temporal variations (in t) into spa-
tial ones (in r) via r = r0 − Vejt. Under the assumption of homo-
geneity, one can then estimate the magnetic helicity spectrum as
H(k) = 4 Im(B̂θB̂&φ )/k; see Matthaeus et al. (1982) and Eq. (9) of

A11, page 8 of 10

Magnetic helicity fluxes  
from convection simulations

Norm. helicity fluxes stay constant 
Increase due to mag. field increase



11th of  June 2021 Advanced Study Program on Helicities in Astrophysics and Beyond 30

Cyclic dependency of  helicity fluxes



11th of  June 2021 Advanced Study Program on Helicities in Astrophysics and Beyond 31Rotation 

Wright & Drake 2016

X
-r

ay
 L

um
in

os
ity

 
Rotation-Activity Relation

X-rays from stellar coronae

Rotation         magnetic helicity

Rotation         magnetic surface flux



11th of  June 2021 Advanced Study Program on Helicities in Astrophysics and Beyond 32
AIA 171 channel Pencil Code

Prescribed 
photospheric 

motions  
mimicking solar 

granulation

Spitzer heat conductivity 

A&A 624, L12 (2019)

Fig. 1. Observed photospheric magnetic field that drives our simula-
tion. We show the line-of-sight magnetogram from 16 August 2014 at
23:30:48 UT of active region AR 12139 observed with HMI on board
of SDO. The temporal evolution of this magnetogram is used as input
for the photospheric magnetic field in the simulation, see Sect. 2. The
small square indicates a region of interested where a compact loop is
observed, see Sects. 3 and 4.

2. Data-driven 3D MHD model

We numerically solved the 3D resistive MHD equations, that
is, the induction equation together with the mass, momentum,
and energy balance, from the surface of the Sun into the corona.
For this we used the Pencil Code1 with its special module to
account for the physics of the corona (Bingert & Peter 2011,
2013). This solves for the vector potential A, the velocity u, the
density ⇢, and the temperature T in a fully self-consistent and
time-dependent way.

One key element of a coronal model is the inclusion of
(Spitzer) heat conductivity along the magnetic field that depends
on temperature as T 5/2. We used non-Fourier heat flux evolution
and semi-relativistic Boris correction (e.g., Boris 1970; Rempel
2017), both newly implemented into the Pencil Code to speed
up the simulation significantly (see Chatterjee 2018; Warnecke
& Bingert 2018, for details). The plasma was cooled by opti-
cally thin radiative cooling calculated from a prescribed radia-
tive loss function. The details of the model are presented in
Bingert & Peter (2011, 2013) and Warnecke & Bingert (2018)
and are not repeated here. We used a magnetic di↵usivity of
⌘ = 5⇥109 m2 s�1, ensuring a mesh Reynolds number of around
unity, and a viscosity of ⌫ = 1010 m2 s�1, similar to the Spitzer
value at coronal temperatures and densities.

Our computational domain was a Cartesian box with 1024 ⇥
1024⇥ 512 grid points, representing 374⇥ 374⇥ 80 Mm3 on the
Sun. This is large enough to host a typical active region. We used
periodic boundary conditions in the horizontal x and y directions.
At the top boundary, the box was closed for all thermodynamic
quantities, and we applied a potential field condition for the mag-
netic field. At the bottom boundary (z = 0), which represents the
solar surface, the temperature and density were fixed. Here, we

1 https://github.com/pencil-code/

prescribed the photospheric velocities using a granulation driver
that mimics the distribution of flows in time and space compa-
rable to the observed motions. We followed the original descrip-
tion by Gudiksen & Nordlund (2005a) for this.

The central ingredient of our model is the implementation
of the bottom boundary for the magnetic field. Here, we fed a
time series of observed values for the (vertical) magnetic field
and thus drove the evolution of the magnetic field in the photo-
sphere so that it matched the observed evolution. Because the
time cadence of the magnetograms is much slower than the
time step of the simulation, we interpolated between the mag-
netograms that were closest in time for every time step of the
numerical model. Photospheric velocities also act on the mag-
netic field at the bottom boundary and alter it. To ensure that
the magnetic field at the bottom boundary continued to evolve
according to the observations, we employed a relaxation scheme.
This smoothly forces the field at the bottom boundary to follow
as prescribed by observations. We chose a timescale of 10 min
for this relaxation, motivated by the general timescale of the
granular magnetic fields. This approach allowed us to generate
upward-directed Poynting flux and simultaneously ensured that
we remained close to the observed state (see Bingert & Peter
2011, 2013; Warnecke & Bingert 2018, for details).

To feed the simulation, we used a time series of line-of-sight
magnetic field measurements of active region AR 12139 from
the Helioseismic and Magnetic Imager (HMI; Schou et al. 2012)
that begin on 16 August 2014, start at 23:14:53 UT, and have a
cadence of 45 s (Fig. 1). The region was very close to disk cen-
ter, and we therefore used the line-of-sight magnetic field for
the vertical component in our simulation. The grid spacing of
the model (366 km) is the same as the plate scale of the HMI
observation (0.500 per pixel). We adjusted the edges of the mag-
netograms to ensure that ethey fulfilled the horizontally periodic
boundary conditions. We first ran the simulation with the mag-
netic field from the first snapshot of the time series to let the
temperature and density reach a quasi-stationary state. This took
about four solar hours. We then began to feed the time series of
the changing magnetic field into the bottom boundary; this drives
the evolution in the computational domain. The simulation then
evolved for another half hour. We focus our analysis below on
the snapshot at 16.5 min.

3. Comparison with observations

The main goal of this study comparing real observations to the
coronal emission as synthesized from our 3D MHD active region
model, which is driven by a time series of actually observed
magnetograms. For this we derived EUV emission as it would be
observed by the Atmospheric Imaging Assembly (AIA; Lemen
et al. 2012). Based on the temperature and density in the model,
we used the temperature response kernel (Boerner et al. 2012)2

of the 171 Å channel. This channel is dominated by emission
from Fe x that originates from just below 1 MK.

Overall, the numerical model reproduces the dipole-like
structure of the active region. In Fig. 2 we show the compari-
son of the model as viewed from straight above (left) and the
observations near disk center (right) at the same time, that is,
the model was evolved using the time-dependent observed mag-
netograms to the same time as the observations shown here
(16.5 min). The peak emission from the observations and the
simulation di↵ers by a factor lower than six, which corresponds
to di↵erences in density smaller than a factor of 2.5; see Sect. 5

2 Implemented in SolarSoft, http://www.lmsal.com/solarsoft/
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Fig. 2. Comparison of the observed emission and the emission as synthesized from model. Left panel: emission of the AIA 171 Å channel of
AR 12139 on 16 August 2014 at 23:30:48 UT near disk center. Right panel: synthesized emission of the same channel from the simulation as
viewed from the top of the computation box. For better visibility, we use a nonlinear scaling of the images (power of 0.7 for the observation,
and power of 0.4 for the synthesized emission). The color bars reflect this. The peak count value in the observations (corresponding to 1.00) is
3500 DN pixel�1; this is a factor of six lower for the model. This di↵erence corresponds to a factor of 2.5 in density (see Sect. 5). The inlay shows
a zoom-in of the region indicated by the white square. It shows a compact small loop. The color scaling is linear here. The observations and the
model cover the same physical space on the Sun with a field of view of (515.900)2 corresponding to (374.4 Mm)2. The numbers indicate the features
discussed in Sect. 3. The blue dashed rectangle indicates the zoom-in used in Fig. 3.

for a detailed discussion. Despite this quantitative di↵erence, we
find an overall qualitative agreement, in particular for the follow-
ing four features (numbers as in Fig. 2).

(1) Long loops. We find that loops with lengths of 100 Mm
to 200 Mm connect opposite polarities at the edges of the active
region in the northern (top) and southern areas. These loops are
associated with the large-scale potential-like magnetic field of
the active region. The model loops appear to be less strongly
helical than the observed loops, probably because the observed
magnetograms also lack strong magnetic helicity (see Sect. 5).
Like in the observations, the model shows quite a few distinct
long loops in the southern part. Some even lie at roughly the
same location (1a). The observations show a more complex
broad bundle of loops in the northern part, where the model
only shows a single long loop (1b). The long model loop in the
north still shows a rather broad structure with a clear loop in the
middle.

(2) Fan loops. In our model we find fan loops, in particu-
lar, on the western (right) side of the active region. They appear
at the same locations as very similar features that are visible
in the observations. Several thinner structures quickly diverge
and form a funnel-type structure in which the thinner strands are
embedded (2a). Our model even reproduces a smaller feature of
this type outside of the main part of the active region (2b) in
an area of enhanced magnetic field strength (cf. Fig. 1). The fan
loops in this setup also appear because of the horizontal periodic
domain; see the discussion in Sect. 5.

(3) Di↵use emission. Loops in the corona have a rather low
contrast, they often stick out of a di↵use non-resolved back-
ground by only 10% to 30% (Del Zanna & Mason 2003; Peter
et al. 2013). We see this general pattern in our model as well.

Most of the thin loops are embedded in much thicker structures
of di↵use emission. In our model this is due to the high mag-
netic resistivity, but it might well reflect the situation on the real
Sun (for a discussion of the resistivity in MHD models, see Peter
2015).

(4) Compact loops. In the core of an active region, obser-
vations show an abundance of small transient features, which
may be low-lying loops that are related to small-scale magnetic
patches in the photosphere (Peter et al. 2013). In the model we
see only a few of these, probably because of the limited spatial
resolution (see Sect. 5). The example shown in the inset of Fig. 2
only exists for less than 10 min in the simulation and is indeed a
low-lying loop (cf. Sect. 4) that is rooted in two small opposite-
polarity patches that evolve quickly.

4. Energy deposition in the corona

The coronal structures that appear in the model do so because
energy is deposited along field lines that are at their footpoints
driven by horizontal motions. Here, we briefly discuss the rela-
tion of the loops that appear to the energy input per particle. In
Fig. 3 we display the distribution of the energy input at the same
time as the snapshot of the emission shown in Fig. 2, but inte-
grated in time for the 120 s leading up to that time. This accounts
for the Alfvén transit time through the coronal structure so that
disturbances of the magnetic field have time to spread.

When we integrate the energy input per particle vertically,
loop features become visible that are similar to those seen in
emission (compare Fig. 3 to the emission in the blue dashed rect-
angle in Fig. 2). We see more spatial variation along the field
lines in the energy input than in coronal intensity. The reason
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Fig. 8. Scaling of average temperature 〈T 〉 and density 〈ρ〉 with average coronal heat input 〈Htot〉. Each data point represents an average for one of
the model runs with different unsigned surface magnetic flux listed in Table 1. The bars represent the standard deviation of the spatial averages of
T and ρ in time. The red lines are power-law fits to the data. The blue lines indicate what is expected from the RTV scaling laws. See Sects. 5 and
6.2.
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Fig. 9. Scaling of average X-ray emission 〈LX〉 with unsigned surface
flux Φ. Each data point represents an average for one of the model runs
with different unsigned surface magnetic flux listed in Table 1. As a
reference for the magnetic flux,Φref , we choose the magnetic flux of the
least active setup, run 1B (cf. Table 1). The bars represent the standard
deviation of LX in time. The red lines are power-law fits to the data.
The blue lines show the analytic power-law relations based on the RTV
scaling laws. See Sects. 5, 6.3 and 6.4.

Active stars show X-ray luminosities (compared to their
bolometric luminosity) that can be three or more orders of mag-
nitude larger than that of the Sun (e.g. Vidotto et al. 2014). In
this case there would be simply not enough space on the star
to cover it with enough (solar-like) active regions. This means,
the X-ray emission per active region has to increase. This is ex-
actly what we find in our model when increasing the magnetic
flux of an active region while keeping its size (i.e. area) the
same. This leads to a steep increase of X-ray luminosity with
surface magnetic flux, an increase that is even steeper than ob-
served: the power-law index m for LX ∝ Φ

m is about 3.4 in our
model, while the largest value found in observations is below 2.7
(Kochukhov et al. 2020). This overestimation of the power-law
index by our model indicates that on real stars we might find a
mixture of an increase of the numbers of active regions that goes
together with the increase of the peak magnetic field strength (or
magnetic flux per active region) for more active stars.

6.4. Analytical model for scaling of X-ray emission

We will now compare the scaling of LX ∝ Φ
m to some basic

analytical considerations. In an earlier study we derived an ana-
lytical scaling of the X-ray emission with surface magnetic flux
that is based on the RTV scaling relations (Zhuleku et al. 2020).
As discussed in the summary of that model in Sect. 2, there we
used a scaling of active region size with (unsigned) magnetic
flux based on solar observations, see Eq. (7). In contrast, in our
numerical model we keep the size or area covered by the ac-
tive region constant, hence here the power-law index in Eq. (7)
is δ=0. This simplifies our analytical scaling from Eq. (3) to

m =
βγ

7
(2α + 8). (25)

According to Eq. (4), α is the power-law-index relating the
temperature response (or contribution) function to temperature.
Here we approximate this for X-rays as seen by the XRT on
Hinode (see Fig. 3), where a power-law fit yields

RX ∝ Tα with α = 2.1 ± 0.2. (26)

We give a more extensive discussion on the temperature re-
sponses for different instruments in Zhuleku et al. (2020).

The other two parameters β and γ in Eq. (25) we take from
the relations of the Poynting flux to the unsigned surface mag-
netic flux and the total heating in Eqs. (18) and (19), with γ=1/Γ
in Eq. (19). This results in the analytic scaling (based on RTV)
of

LRTV
X ∝ Φm′ with m′ = 3.38 ± 0.91. (27)

This is overplotted onto the results from the numerical experi-
ments in Fig. 9 as a blue line. We conclude that this power-law
index is in good agreement with the value we obtained from the
numerical models, see Eq. (22) and Fig. 9.

Just as for the comparison to the RTV scalings in Sect. 6.2,
also here it is not sufficient to find a match of the power law
index, but also the absolute values of the derived X-ray emission
have to be of the same order for a good match. To get the constant
of proportionality in Eq. (27), we have to assign a volume of
the emitting structure described in the analytical scaling. For the
comparison to our numerical model we thus assign the volume
of the loop(s) dominating the coronal emission. Using the loops
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Table 1. Summary of runs.

Run Hin
M [G2Mm] Hbot

M [G2Mm] EHbot
M

[G2Mm] 〈Hbot
M 〉rms [G2Mm]

R 0 1.3×103 1.5×103 2.4×103

M0 0 2.1×103 2.9×103 4.7×103

M3e3 3×103 3.7×103 1.4×103 5.3×103

M1e4 1×104 1.6×104 1.1×103 1.6×104

M3e4 3×104 4.6×104 1.6×103 4.6×104

M1e5 1×105 1.5×105 2.5×103 1.6×105

M3e5 3×105 4.7×105 8.5×103 4.7×105

M5e5 5×105 7.7×105 1.6×104 7.8×105

M1e6 1×106 1.4×106 4.1×104 1.4×106

M-3e5 -3×103 -4.7×103 9.1 ×103 4.7 ×103

Notes. bla

Fig. 3. bla

Fig. 4. bla

Fig. 5. bla
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Magnetic helicity + X-ray production
Hm=0 Hm=3x105 G2 Mm Hm=-3x105 G2 Mm Hm=1x106 G2 Mm

XRT: Xray emission
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Warnecke et al.: Magnetic helicity affects coronal heating and X-rays
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Magnetic helicity density
Solar  

active region

Magnetic helicity enhances heating

Increase of  X-rays with magnetic helicity is consistent with 
observation, if  Hm increases less linearly with rotation.

Increase of  X-rays with magnetic helicity provide a 
significant contribution to activity-rotation-relation
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Conclusions

Trace of  alpha saturates for high rotation, but non-isotropic

Large variety of  turbulent dynamo effects

Test-field method one way to measure dynamo effects

Explanation for inactive branch still missing 

Injecting mag. helicity causes higher Xray fluxes

Simple dynamo models may not viable 

Helical magnetic field important role in 
understanding the Rotation-Activity-Relation of  stars

LS and SS mag. helicity no opposite sign
All helicities follow ~ Co0.5

Norm. helicity fluxes independent of  rotation

Significant contribution to Xray rotation relation


