MODELLING SOLAR AND STELLAR ACTIVITY DRIVEN BY TURBULENT DYNAMO EFFECTS AND HELICITY

JÖRN WARNECKE

MAX PLANCK INSTITUTE

TOGETHER WITH

Maarit Käpylä, MPS & Aalto University Petri Käpylä, Göttingen University Axel Brandenburg, Nordita Matthias Rheinhardt, Aalto University Hardi Peter & Juxhin Zhulenku, MPS

Rotation-Activity Relation

Activity Cycles

Brandenburg, Saar & Turpin, 1998

Active branch under debate

(e.g. Distefano et al. 2017, Brandenburg et al. 2017, Reinhold et al. 2017, Boro Saikia et al. 2018)

Inactive branch prevails

(e.g. Olperts et al. 2018)

$$\mathbf{Prot/Pcyl} \sim \mathbf{Co}^{0.5} \rightarrow \mathbf{Pcyl} \sim \mathbf{Co}^{-1.5}$$

Strong constrains on the solar dynamo

11th of June 2021

- Modelling of dynamos, sunspots and the corona
- High-resolution and long-term observation

Magnetic Helicity

The glue that connects dynamos and coronae of the Sun and stars

Advanced Study Program on Helicities in Astrophysics and Beyond

Helicity in the Sun and Stars Nonalignment of **Alpha effect from** rotation and gravity global simulations **Magnetic helicity Kinetic helicity** production **Alpha-effect Magn. helicity fluxes Dynamo - Corona Magnetic helicity** connection + catastr. quenching **Importance of** magnetic helicity **Space weather** Tempera for coronal heating lemper coronal heating and X-ray emission 11th of J ties in Astrophysics and Depone

Solar and Stellar Dynamos

DAILY SUNSPOT AREA AVERAGED OVER INDIVIDUAL SOLAR ROTATIONS

Dynamo theory

Electromotive force I

$$\mathcal{E} = a \cdot \overline{B} + b \cdot \nabla \overline{B} + \dots$$

Electromotive force II

Contributions:			"Easy" approach	
	Alpha effect: a	mplificat	scalar, only acts on toroidal field	
	Turbulent pumping: t		radial, tuned to fit the Sun	
	Turbulent diff	usion: d	scalar, tuned to fit the Sun	
	Rädler effect:	delta effe	Not considered	
	+ Additional to	ırbulen	Not considered	
			Schrinner et al. 2005, 20	007, 2012
Test-field method: Measuring turbulent dynamo effects				
	Applying 9 linear independent test-fields, no back reaction			
	Calculating corresponding electromotive force			
	Inverting for turbulent dynamo effects			
11	1th of June 2021 Advanced Study Program on Helicities in Astrophysics and Beyond			

Global stellar dynamo simulations

Dynamo cycles of other authors

Turbulent pumping

Mean magnetic field only "sees" the sum of flow and pumping

 $\overline{U}_{\text{eff}} = \overline{U} + \gamma$

11th of June 2021

Advanced Study Program on Helicities in Astrophysics and Beyond

Turbulent transport coefficients: alpha

Results of simulations fit well with transitional branch

Transitional branch

Distefano et al. 2017

Explanation for inactive branch still missing

Turbulent dynamo effects

Advanced Study Program on Helicities in Astrophysics and Beyond

Magnetic helicity production with increasing rotation

Comparison with observations

Scaling of X-rays with magnetic flux

Magnetic helicity injection

11th of June 2021

Advanced Study Program on Helicities in Astrophysics and Beyond

Magnetic helicity enhances heating

Increase of X-rays with magnetic helicity is consistent with observation, if H_m increases less linearly with rotation.

Increase of X-rays with magnetic helicity provide a significant contribution to activity-rotation-relation

Conclusions

