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‣ For the solar corona, we impose a “source 
surface” outer boundary to model the 
streamer structure.
[Altschuler-Newkirk Solar Phys, 1969] 
[Schatten et al Solar Phys, 1969]

Outline

‣ Potential magnetic field (no volume currents):

‣ Theory: how can a potential field 
contain helicity?

‣ Computations: how much helicity 
would a potential solar corona 
contain? 

Chile 2019: http://www.zam.fme.vutbr.cz/~druck/



Theory

How can a potential field contain helicity?



Helicity of a potential field

where

‣ By choosing Ap we can give H any arbitrary value:

‣ Most logical choice is to make it vanish by choosing

so

[eg. Berger A&A, 1988]

‣ Main observation: if we subdivide

then the individual           will be non-zero in general…



Our vector potential

‣ We can write

‣ It is the “potential field limit” of the more general poloidal-toroidal vector potential

on each spherical surface

‣ This gauge minimises because

[Gubarev et al. PRL, 2001]
[cf. Yeates-Page J Plasma Phys, 2018]

for which H is the Berger-Field relative helicity (with potential reference):

[cf. Berger-Hornig J Phys A, 2018]

In general the Berger-Field relative helicity is



Field line helicity

‣ For physical relevance we should subdivide V into magnetic subdomains:

Then each h(Vi) will 
be an ideal invariant 
[for line-tied 
boundaries].

‣ Taking a limiting domain around every field line gives the field line helicity:
Relative field-line helicity 5

FIGURE 1. Definition sketch for (2.5), showing a thin flux tube V"(x) of radius " and
magnetic flux �"(x) around the field line L(x) that is rooted at x 2 @V .

This formula shows clearly that, were L(x) to be a contractible closed loop, then A(x)
would be gauge independent, and by Stokes’ theorem it would simply be the magnetic
flux linked through that loop. Clearly A(x) would then be an ideal-MHD invariant,
representing the magnetic flux linked with L(x). In our case, L(x) is not a closed
loop. Nevertheless, A(x) remains an ideal-MHD invariant provided that there are no
boundary motions, and also that the gauge of A on the boundary is fixed. Indeed a
gauge transformation from A to A0

= A + r� will change the value of A(x) to

A0(x) =A(x) + �(x+) � �(x), (2.7)

where x+ is the other end of the field line, as in figure 1. This is simply the limiting
version of the formula (2.2). In fact, since @V is a single closed surface, it follows
that A(x), like h(V), depends only on n̂ ⇥ A. For if n̂ ⇥ A0

= n̂ ⇥ A on @V , then
n̂ ⇥r� = 0 on @V , so that � is constant over all of @V and A0(x)=A(x). This would
not be true for a domain where @V is not a single connected surface, for example a
spherical shell. As we will see in this paper, the art of working with field-line helicity
is to choose an informative gauge for n̂ ⇥ A.

Finally, we note the relation between A(x) and the overall helicity h(V). When the
field lines L(x) partition the whole volume (i.e. there are no closed or ergodic field
lines), integrating (2.5) over all field lines, weighted by magnetic flux, will give h(V)
(Berger 1988). In other words,

1
2

I

@V
A|Bn| d2x = h(V), (2.8)

where the factor half arises because each field line has two endpoints on @V .

3. Definition of relative field-line helicity

The aim of this paper is to generalise the formula (2.8) to the relative helicity HR.
In other words, we would like to define a ‘relative field-line helicity’ AR(x) for each
field line that is invariant under an ideal-MHD evolution and satisfies

1
2

I

@V
AR|Bn| d2x = HR, (3.1)
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[Berger A&A, 1988; Yeates-Hornig Phys Plasmas 2013; 
Aly Fluid Dyn Res 2018]

[Yeates-Page J Plasma Phys, 2018]

‣ This is an ideal invariant “density” of helicity:

‣ For any field with no closed loops, we can write this 
as a boundary integral



 

pYpLf

Physical meaning

‣ In our gauge, for a potential field,

so (potential field) FLH measures “winding around 
concentrations of Bpr”. 

‣ Even a potential field can contain linking like this in 3D:

 

pYpLf
For an arched field line you can interpret 
FLH as the magnetic flux underneath.

[Yeates-Hornig A&A, 2016]
[cf. Antiochos ApJ, 1987]

[cf. Prior-Yeates ApJ, 2014]



Minimal helicity content

‣ Since the potential field is a minimum-energy state, I think of the FLH distribution in 
our “minimal gauge” as the minimum helicity state.

4 Bourdin & Brandenburg
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Figure 1. Overview of Bz(x, t) (red: Bz < 0, blue: Bz > 0), current density (linear gray scale), and hJ ·Bixy at an evolved snapshot at t = 7
time units at the bottom boundary. The gray dashed line indicates the symmetry axis between cases X and X0. See also Table 1.

point of the present work is to provide the theoretical under-
pinning to why a finite value of the magnetic helicity can
be expected in these simulations that are otherwise com-
pletely mirrorsymmetric. In fact, also the coronal simula-
tions of Rempel (2017) have finite magnetic current helicity
(M. Rempel, private communication), but in their case this
could also be a remnant from the initial magnetic field that
was taken from a large-scale dynamo simulation.
Our work raises the possibility that magnetic helicity can

be determined even from a magnetic field with a 180� am-
biguity and, in particular, from the relative arrangement of
sunspots on the solar surface. We have seen in Section 2.3
that helicity is also generated if all spots feature the same
polarity, even though such setups create less helicity than
multipolar ones. This suggests remarkable prospects for fu-
ture work, whose full extent cannot be imagined at present,
given that detailed sunspot observations exist for many cen-
turies.

3. Conclusions

Our work has demonstrated that the magnetic helicity
above the surface of a star like the Sun can be determined
uniquely by the horizontal arrangement of magnetic flux
concentrations and not just, as was previously thought, by
the twist of the emerging magnetic field. The latter is still
expected to contribute, but the relative importance of these
two mechanisms is unclear and should carefully be assessed
using both observational and theoretical approaches.
An immediate implication of our work is that the hori-

zontal arrangement of just the line-of-sight magnetic field
or—more precisely—the vertical magnetic field, contributes
to determining the sign of magnetic helicity in the region
above. Such magnetograms have commonly been used in
earlier studies of coronal heating. Although footpoint mo-
tions can lead to random twist of magnetic field lines, the
net e↵ect vanishes, as has been confirmed in the simulations
of Bourdin et al. (2013). Nevertheless, net magnetic helicity
has been detected in those simulations; see Bourdin et al.
(2018). Our present results now give us a theoretical frame-
work with which this surprising fact can be understood. In

[cf. Bourdin-Brandenburg ApJ, 2018]

‣ Since a potential field is determined entirely by Br on the solar surface, the minimal 
helicity is really a consequence of that pattern.

‣ In future slides I will measure this minimal helicity content with the (non-ideal-
invariant) total unsigned helicity



Computations

How much helicity would a potential solar corona contain?



Numerical methods

‣ Regular grid 60 x 180 x 360 in 

‣ Finite-difference PFSS code in Python: https://github.com/antyeates1983/pfss
[cf. van Ballegooijen-Priest-Mackay ApJ, 2000]

‣ Integrate Ap along field lines with second-order Runge-Kutta method.

‣ Compute vector potential using 

with Ap0 found using fast-Poisson solver.

[cf. Amari et al 2013; Moraitis et al. 2018]



Toy model - single Bipolar Magnetic Region

Background BMR Background + BMR

only on open 
field lines

on open and closed 
field lines

(a) (b) (c)

�2 �1 0 1 2



Toy model

Without background With background

field line 
helicity

‣ Helicity content is maximized when BMR is east-west. 

‣ Helicity primarily comes from “linking” with the background field.

‣ There is a net helicity within an east-west BMR:

net helicity:
In total:



HMI synoptic maps

‣ Magnetogram data from Solar Dynamics Observatory/Helioseismic 
and Magnetic Imager.

‣ Radial component pole-filled synoptic maps [Sun 2018].

‣ Carrington Rotation 2098 (June 2010) to 2226 (February 2020).

‣ Spherical harmonic smoothing filter.
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HMI synoptic maps



HMI synoptic maps

Total flux

Open flux

Dipole

Unsigned H

‣ Helicity is predominantly in the active region belts.

‣ Total helicity doesn’t correlate directly with total flux…



HMI synoptic maps

‣ Suggests that helicity mostly arises from linking of active region flux 
with overlying field.

0 1 2 3 4 5

�0
2

[1046 Mx2]

0.0

0.5

1.0

1.5

H
[1

04
4

M
x2

]

(a)

0 1 2 3 4 5

�1
2

[1044 Mx2]

0.0

0.5

1.0

1.5
(b)

0 1 2 3 4 5

�0 �1 [1045 Mx2]

0.0

0.5

1.0

1.5
(c)

H ⇠ 0.34�0 �1

H ⇠ 0.35�0 �1

H ⇠ 0.38�0 �1

U
ns

ig
ne

d 
H

(Total flux)2 (Open flux)2 (Total flux)*(Open flux)



Cause of the peak?

‣ The cause of the large peak is a single strong 
active region NOAA 12192. [Sun et al. 2015]
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[cf. McMaken-Petrie ApJ, 2017] - 
chirality of EUV loops



Cause of the peak?

‣ The cause of the large peak is a single strong 
active region NOAA 12192. [Sun et al. 2015]
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Cycle 24, and it becomes negative after the polar field reversal.
A similar situation is observed in the southern hemisphere.
Figure 5(b) shows the time-averaged hemispheric helicity sign
rule together with uncertainty bars. The uncertainties are
estimated using the differences between the original and
smoothed signals. It is seen that on average during cycle 24, the
large-scale magnetic field shows the same hemispheric sign as
the “small-scale” magnetic field. However, if we were to
restrict the averaging period to the first half of cycle 24, i.e., by
CR 2097–2156, we get, in general, a positive magnetic helicity
density in the northern hemisphere and a negative one in the
southern hemisphere (except at low latitudes). Therefore, at this
period in time the bihelical property can be confirmed with
some reservations. This agrees with the two-scale analysis of
Brandenburg et al. (2017), as well as with the results of Pipin &
Pevtsov (2014; see Figure 9(a) there). Also, Figures 5(c) and
(d) support this conclusion.

Figure 5(c) shows the evolution of “small-scale” magnetic
helicity density a b· ; see Equation (11). In our definition a b·

includes magnetic fields from all ranges of scales, except the
axisymmetric magnetic field. A more accurate analysis of the
magnetic helicity distribution over the scales can be done using
the two-scale analysis introduced by Brandenburg et al. (2017).
Averaged over cycle a b· , their analysis shows the hemi-
spheric helicity rule for the solar active regions. The large
uncertainty bars are mostly caused by fluctuations in magnetic
flux emergence. It also can be seen that for the first half of cycle
24, a b· maintains the hemispheric helicity rule. The violation
of the rule in the time-averaged signal is likely caused by the
magnetic activity in the southern hemisphere during
2014–2015. In particular, the active region NOAA 12192
strongly violates the hemispheric helicity rule, as we see in
Figure 3. At the end of our observational period, a b· shows
inversion of the helicity sign at low latitudes. This agrees with
the results for the current helicity density evolution in cycle 23
(e.g., Zhang et al. 2010).
We find that the standard error for A B R¯ · ¯ is less than 1 G2

and has reaches maximum at sunspot formation latitudes.
Similarly, the standard error ofa b R· is less than 100 G2. Liu
et al. (2017) estimated the maximum uncertainty of the vector
magnetic-field measurement as ∼10–20 G. Thus, we can
conclude that the standard deviation of uncertainty of the
determined normalized magnetic vector-potential components
is less than 10 G. A more accurate estimate of errors for the
magnetic helicity density on each synoptic map requires
additional analysis, and will be done in a separate paper.

5. Discussion and Conclusions

Here, we propose a novel approach to reconstruct the surface
magnetic helicity density on the Sun and Sun-like stars. The

Figure 2. Synoptic maps of the vector magnetic field and the reconstructed potential from SDO/HMI for CR 2156.

Figure 3. Distribution of the magnetic helicity density A B· for CR 2156.

4

The Astrophysical Journal Letters, 877:L36 (7pp), 2019 June 1 Pipin et al.

[cf. Pipin et al ApJL, 2019] - 
estimate A.B from vector magtms:



In context

‣ Time-average over global potential field (high-res): 

‣ Typical (relative) helicity of a significant non-potential active region:

[DeVore ApJ, 2000, Bleybel et al. A&A 2002, 
Bobra et al. ApJ 2008, Pevtsov JApA 2008, 
Georgoulis et al ApJL 2009]



Conclusion

‣ Potential fields in the solar corona contain (field line) helicity. 

‣ It predominantly arises from linking of active regions with overlying magnetic field. 

‣ The total absolute helicity content is comparable to 2 non-potential active regions.  

‣ The net helicity content is zero globally but can be unbalanced within an active region.

‣ Can be imprinted on non-potential field, e.g. 
acting as seed for amplification by photospheric 
shearing flows [Yeates-Hornig A&A 2016]

Yeates, The Minimal Helicity of Solar Coronal 
Magnetic Fields, ApJL 898 L49 (2020)
- and references therein

‣ More details:


