

Does a potential magnetic field contain helicity?

Anthony Yeates

HELICITY 2020, 8-Oct-2020

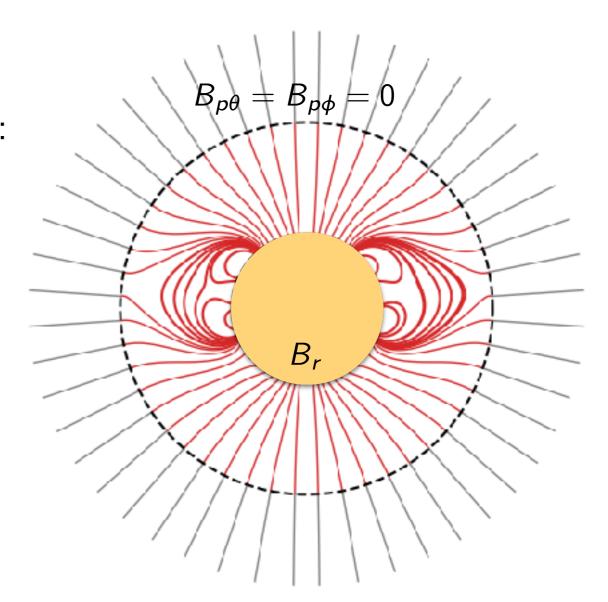
Outline

Potential magnetic field (no volume currents):

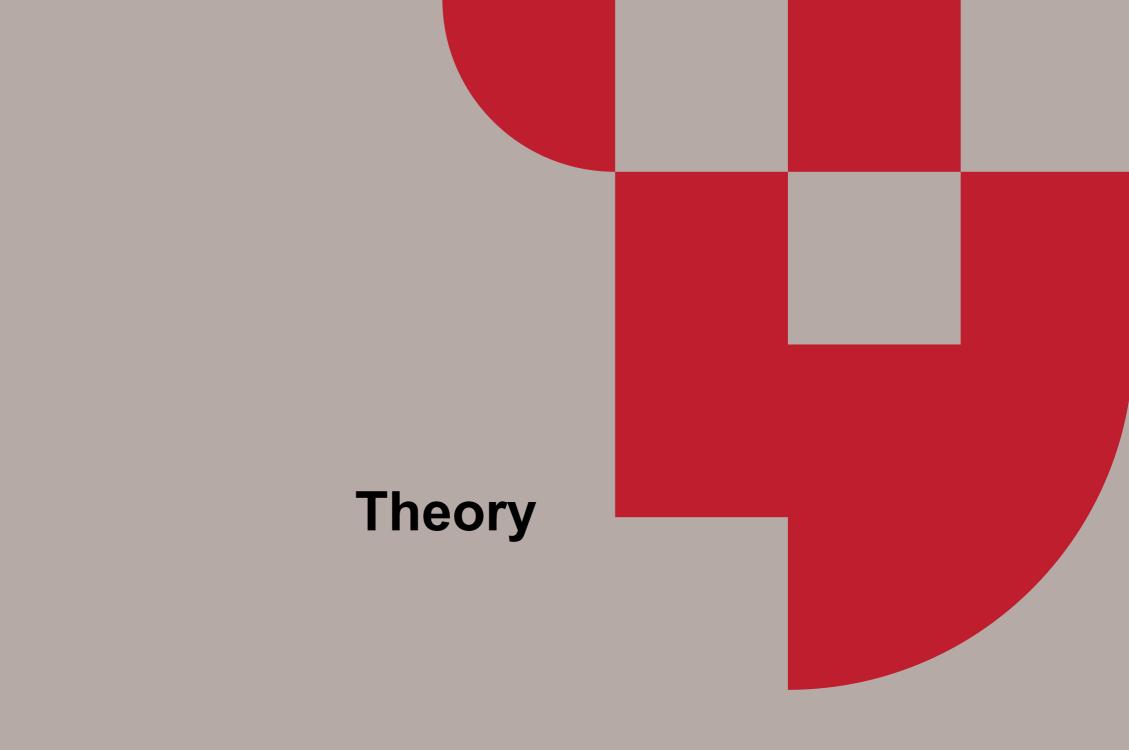
$$abla \cdot \mathbf{B} = 0 \\
abla \times \mathbf{B}_p = \mathbf{0}$$
 \Longrightarrow $abla^2 \phi = 0$

For the solar corona, we impose a "source surface" outer boundary to model the streamer structure.

[Altschuler-Newkirk *Solar Phys,* 1969] [Schatten et al *Solar Phys,* 1969]



- Theory: how can a potential field contain helicity?
- ▶ Computations: how much helicity would a potential solar corona contain?



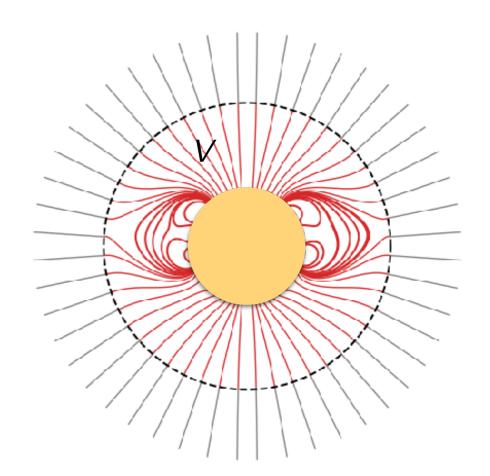
How can a potential field contain helicity?

Helicity of a potential field

$$H = \int_V \mathbf{A}_p \cdot \mathbf{B}_p \, dV$$
 where $\mathbf{B}_p = \nabla \times \mathbf{A}_p$

▶ By choosing A_p we can give H any arbitrary value:

$$\mathbf{A}_{p} \rightarrow \mathbf{A}_{p} + \nabla \chi$$
 $H \rightarrow H + \oint_{\partial V} \chi \mathbf{B}_{p} \cdot \mathbf{n} \, \mathrm{d} S$



Most logical choice is to make it vanish by choosing

$$A_{pr}=0$$
 $\nabla \cdot \mathbf{A}_{p}=0$

SO

$$H(V) = \int_{V} \mathbf{A}_{p} \cdot \nabla \phi \, dV = \oint_{\partial V} \phi \mathbf{A}_{p} \cdot \, \mathbf{dS} - \int_{V} \phi \nabla \cdot \mathbf{A}_{p} \, dV = 0$$

[eg. Berger A&A, 1988]

▶ Main observation: if we subdivide

$$V = V_1 + V_2 + \ldots + V_n$$

then the individual $H(V_i)$ will be non-zero in general...

Our vector potential $A_{pr} = 0$ $\nabla \cdot \mathbf{A}_{p} = 0$

$$A_{pr}=0$$

$$\nabla \cdot \mathbf{A}_p = 0$$

We can write

$$\mathbf{A}_p = \nabla \times \left(P\hat{\mathbf{r}}\right) \implies \nabla_h^2 P = -B_{pr}$$
 on each spherical surface

This gauge minimises $\int_{V} |\mathbf{A}_{p}|^{2} dV$ because

$$\int_{V} |\mathbf{A}_{p} + \nabla \chi|^{2} dV = \int_{V} |\mathbf{A}_{p}|^{2} dV + \int_{V} |\nabla \chi|^{2} dV + 2 \oint_{\partial V} \chi \mathbf{A}_{p} \cdot d\mathbf{S} - 2 \int_{V} \chi \nabla \cdot \mathbf{A}_{p} dV$$

[Gubarev et al. PRL, 2001]

[cf. Yeates-Page J Plasma Phys, 2018]

It is the "potential field limit" of the more general poloidal-toroidal vector potential

$$\mathbf{A}^{PT} = \mathbf{T}\hat{\mathbf{r}} + \nabla \times \left(P\hat{\mathbf{r}}\right) \qquad \qquad \nabla_h^2 T = -J_r$$

for which *H* is the Berger-Field relative helicity (with potential reference):

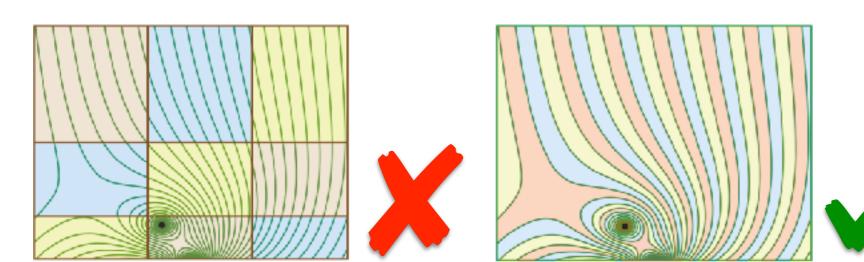
$$H_r(V) = \int_V \mathbf{A}^{PT} \cdot \mathbf{B}^{PT} \, \mathrm{d}V$$

[cf. Berger-Hornig J Phys A, 2018]

In general the Berger-Field relative helicity is $H_r(V) = \int_V (\mathbf{A} + \mathbf{A}_P) \cdot (\mathbf{B} - \mathbf{B}_P) dV$

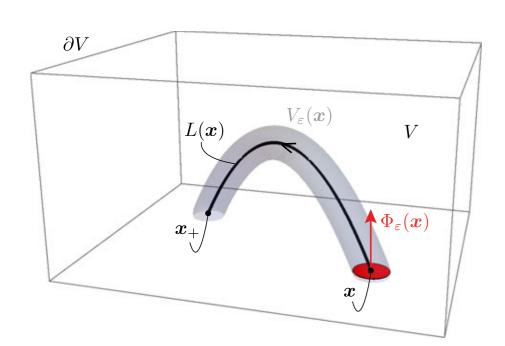
Field line helicity

▶ For physical relevance we should subdivide *V* into magnetic subdomains:



Then each $h(V_i)$ will be an ideal invariant [for line-tied boundaries].

▶ Taking a limiting domain around every field line gives the field line helicity:



[Yeates-Page J Plasma Phys, 2018]

$$\mathcal{A}(L) = \lim_{\epsilon \to 0} \frac{\int_{V_{\epsilon}(L)} \mathbf{A}_{p} \cdot \mathbf{B}_{p} dV}{\Phi(V_{\epsilon}(L))} = \int_{L} \mathbf{A}_{p} \cdot dI$$

[Berger *A&A*, 1988; Yeates-Hornig *Phys Plasmas* 2013; Aly *Fluid Dyn Res* 2018]

▶ This is an ideal invariant "density" of helicity:

$$\int_{\{L\}} \mathcal{A}(L) \, \mathrm{d}\Phi = H(V)$$

For any field with no closed loops, we can write this as a boundary integral $H(V) = \frac{1}{2} \int_{\text{av}} A|B_{pr}| \, dS$

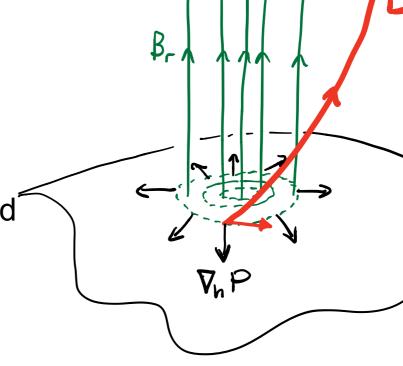
Physical meaning

In our gauge, for a potential field,

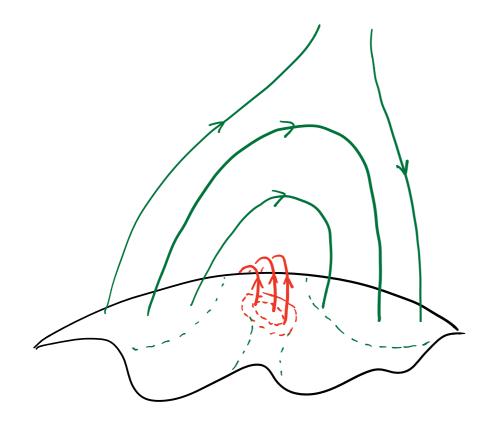
$$\mathcal{A}(L) = \int_{L} \mathbf{A}_{p} \cdot d\mathbf{I} = \int_{L} \hat{\mathbf{r}} \cdot \left(d\mathbf{I} \times \nabla_{h} P \right)$$

so (potential field) FLH measures "winding around" concentrations of B_{pr} ".

[cf. Prior-Yeates *ApJ*, 2014]



▶ Even a potential field can contain linking like this in 3D:



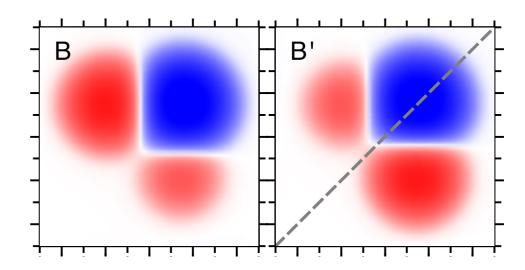
For an arched field line you can interpret FLH as the magnetic flux underneath.

[Yeates-Hornig *A&A*, 2016] [cf. Antiochos *ApJ*, 1987]

Minimal helicity content

- ▶ Since the potential field is a minimum-energy state, I think of the FLH distribution in our "minimal gauge" as the minimum helicity state.
- \blacktriangleright Since a potential field is determined entirely by B_r on the solar surface, the minimal helicity is really a consequence of that pattern.

[cf. Bourdin-Brandenburg ApJ, 2018]



In future slides I will measure this minimal helicity content with the (non-ideal-invariant) total unsigned helicity

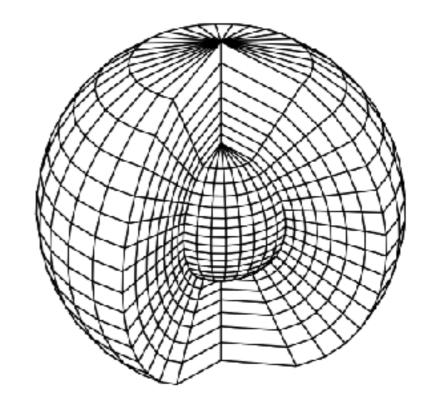
$$\overline{H}(V) = rac{1}{2} \int_{\partial V} |\mathcal{A}B_{pr}| \,\mathrm{d}S$$

Computations

How much helicity would a potential solar corona contain?

Numerical methods

▶ Regular grid 60 x 180 x 360 in $(\log(r/r_0), \cos \theta, \phi)$



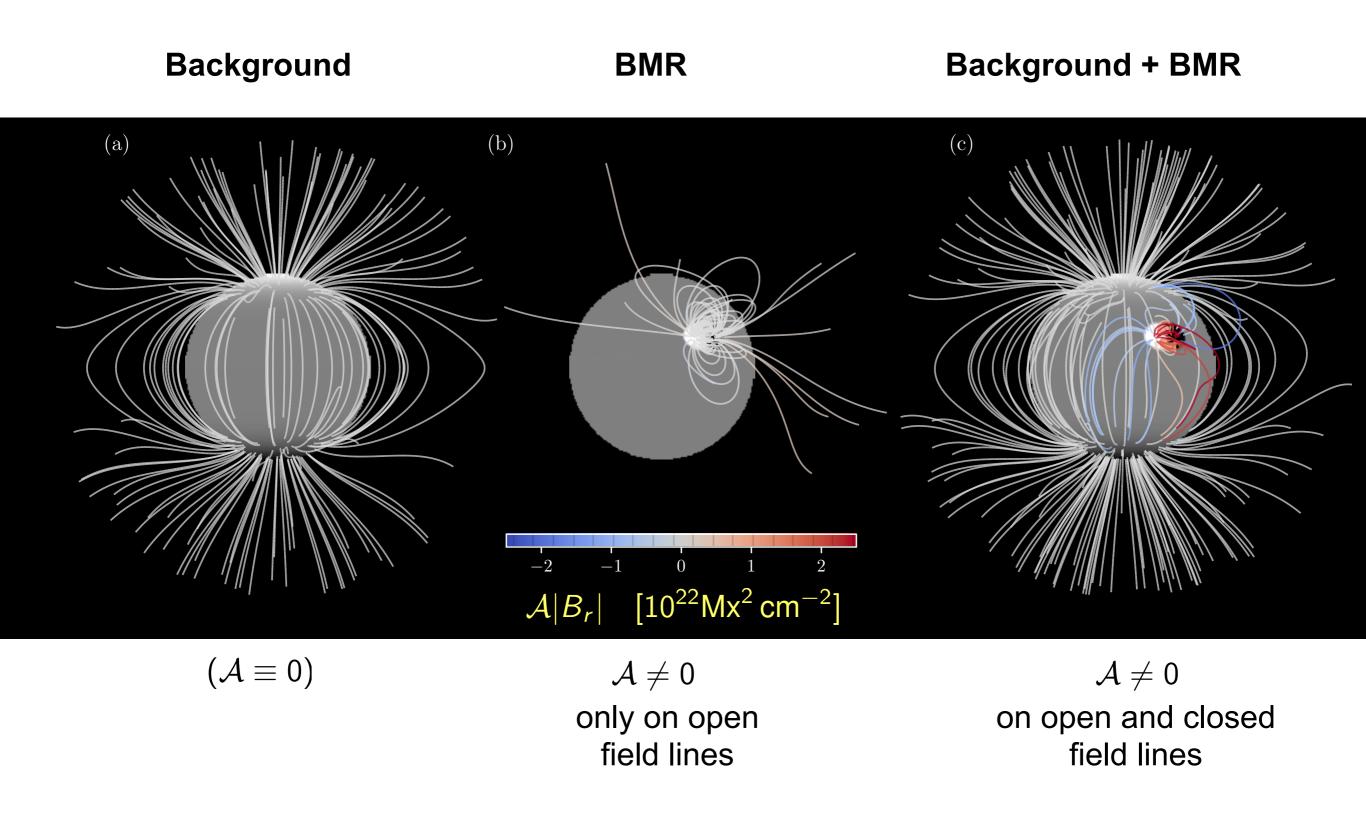
- Finite-difference PFSS code in Python: https://github.com/antyeates1983/pfss [cf. van Ballegooijen-Priest-Mackay *ApJ*, 2000]
- ▶ Compute vector potential using [cf. Amari et al 2013; Moraitis et al. 2018]

$$\mathbf{A}_{p}(r,\theta,\phi) = \frac{r_0}{r} \mathbf{A}_{p0}(r_0,\theta,\phi) + \frac{1}{r} \int_{r_0}^{r} \mathbf{B}_{p}(r',\theta,\phi) \times \hat{\mathbf{r}} r' dr'$$

with A_{p0} found using fast-Poisson solver.

Integrate A_p along field lines with second-order Runge-Kutta method.

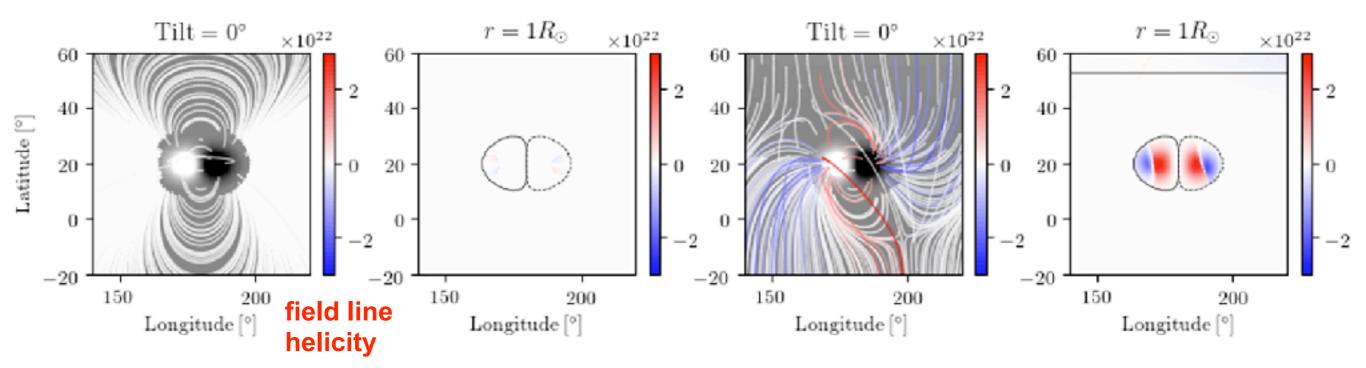
Toy model - single Bipolar Magnetic Region



Toy model

Without background

With background

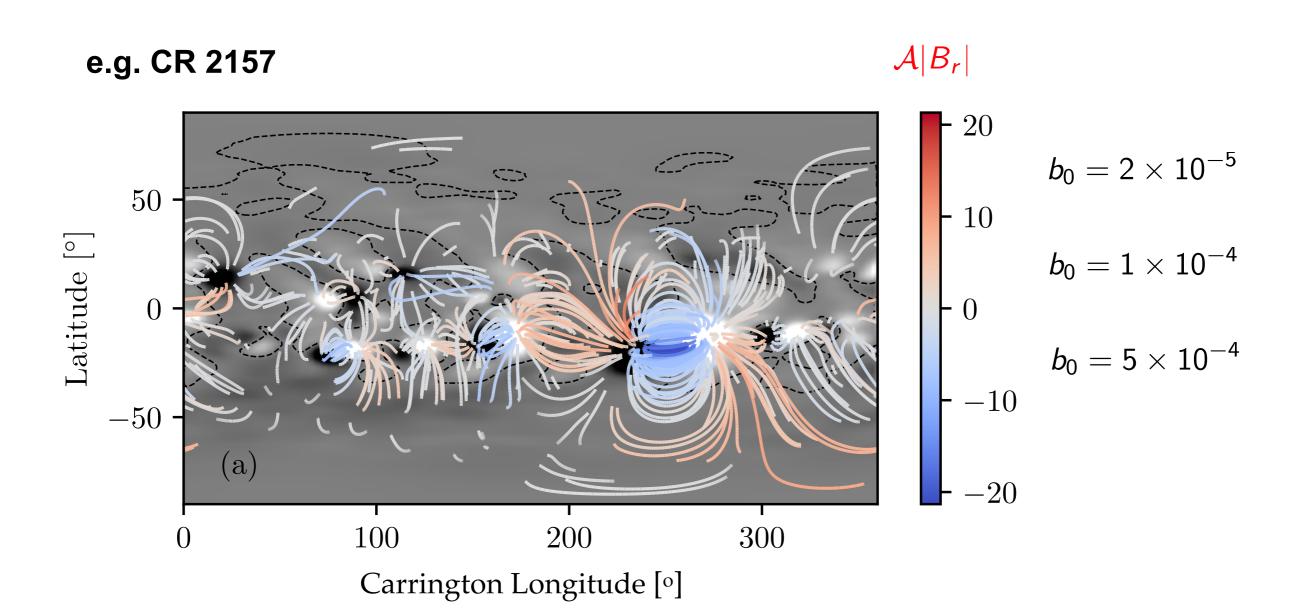


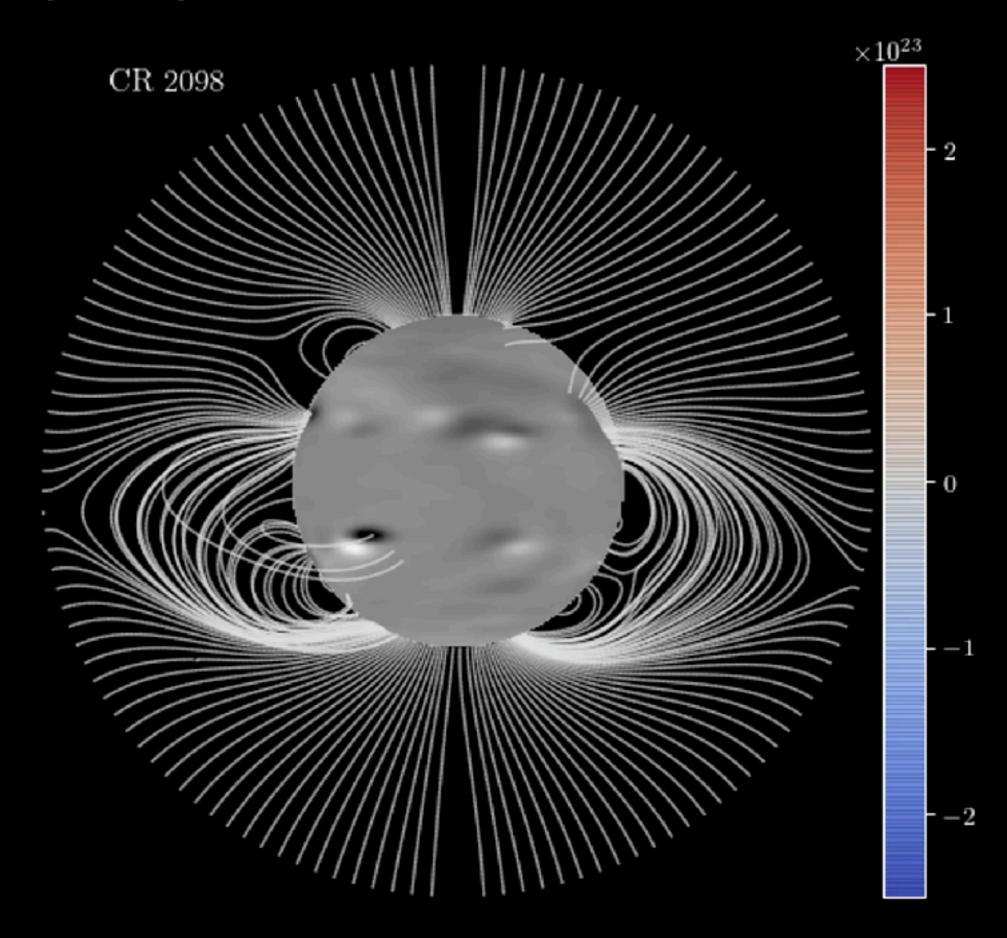
- Helicity content is maximized when BMR is east-west.
- Helicity primarily comes from "linking" with the background field.
- ▶ There is a net helicity within an east-west BMR:

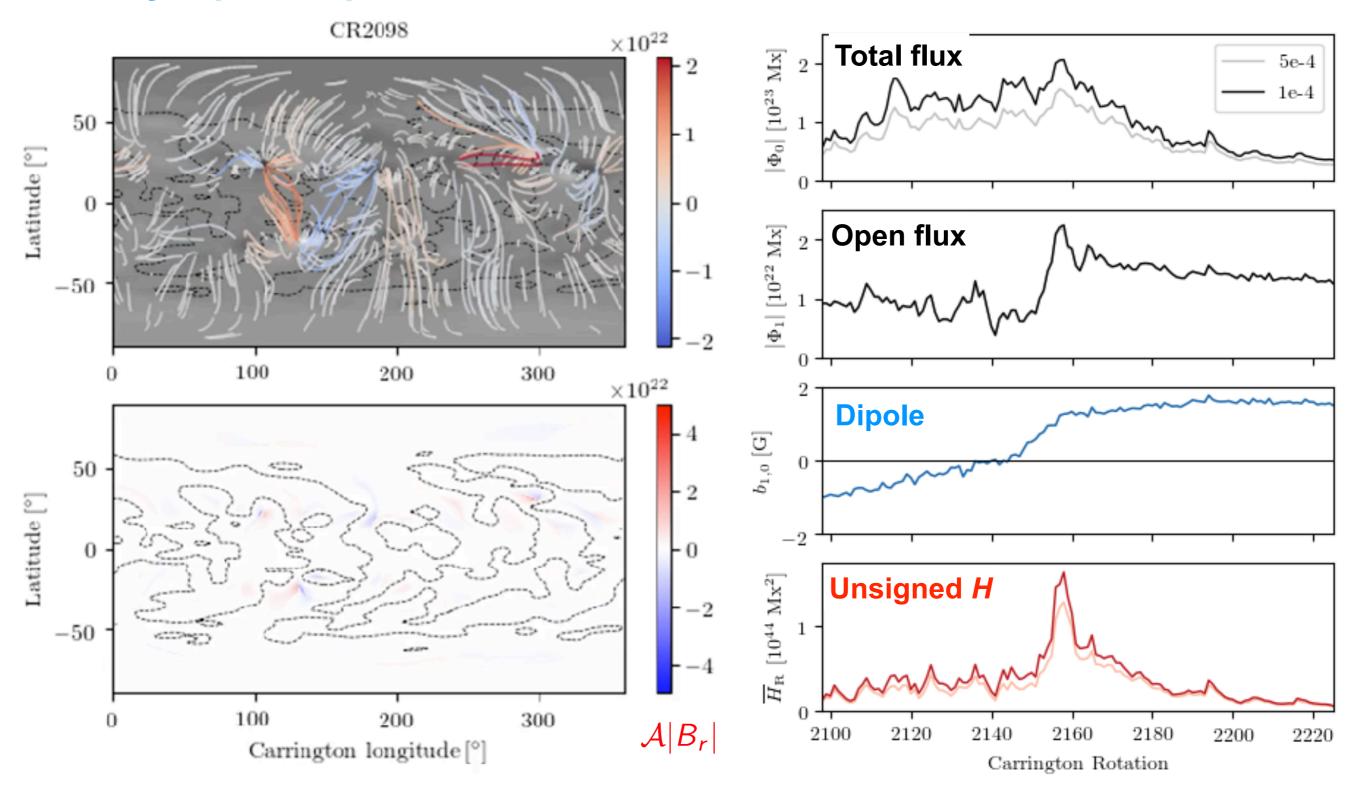
In total:

$$\overline{H} = 4.7 \times 10^{42} \,\text{Mx}^2$$
 $H = -0.07 \times 10^{42} \,\text{Mx}^2$

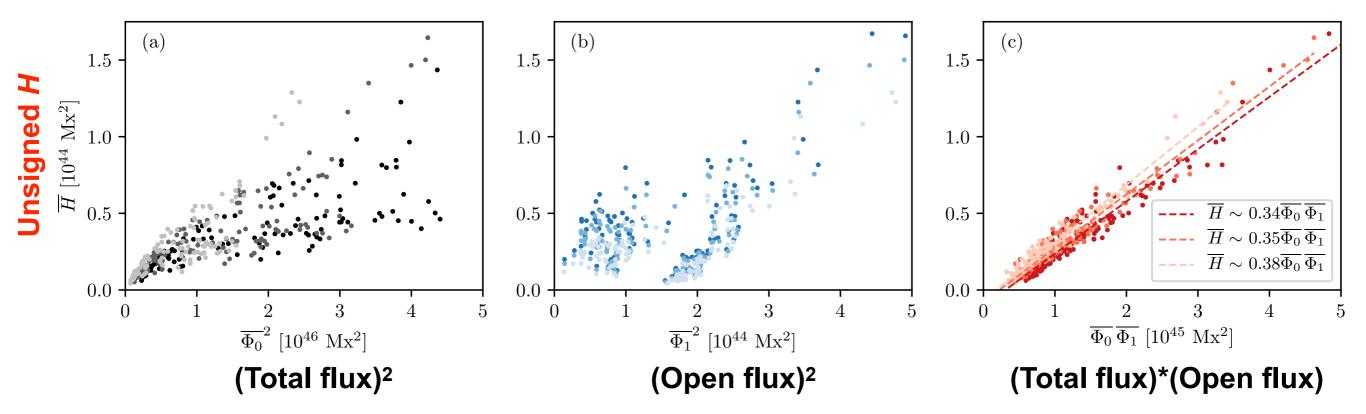
- Magnetogram data from Solar Dynamics Observatory/Helioseismic and Magnetic Imager.
- ▶ Radial component pole-filled synoptic maps [Sun 2018].
- Carrington Rotation 2098 (June 2010) to 2226 (February 2020).
- Spherical harmonic smoothing filter.







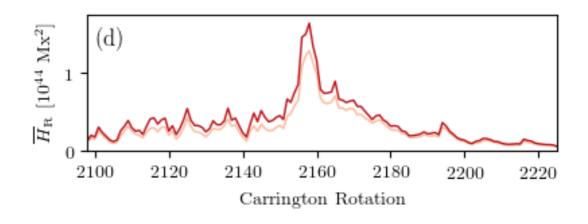
- Helicity is predominantly in the active region belts.
- Total helicity doesn't correlate directly with total flux...

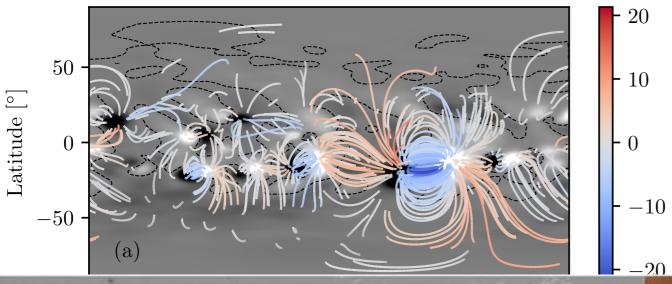


Suggests that helicity mostly arises from linking of active region flux with overlying field.

Cause of the peak?

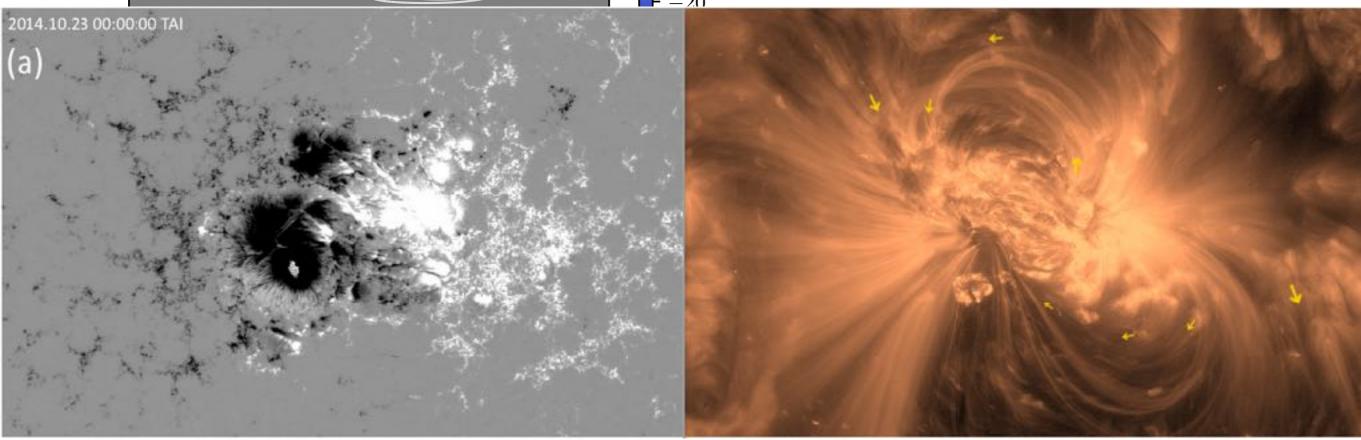
The cause of the large peak is a single strong active region NOAA 12192. [Sun et al. 2015]





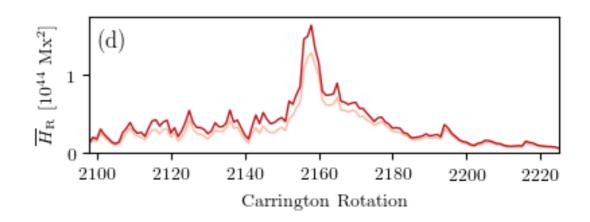
Has negative H because it emerges after polar field reversal with positive leading polarity.

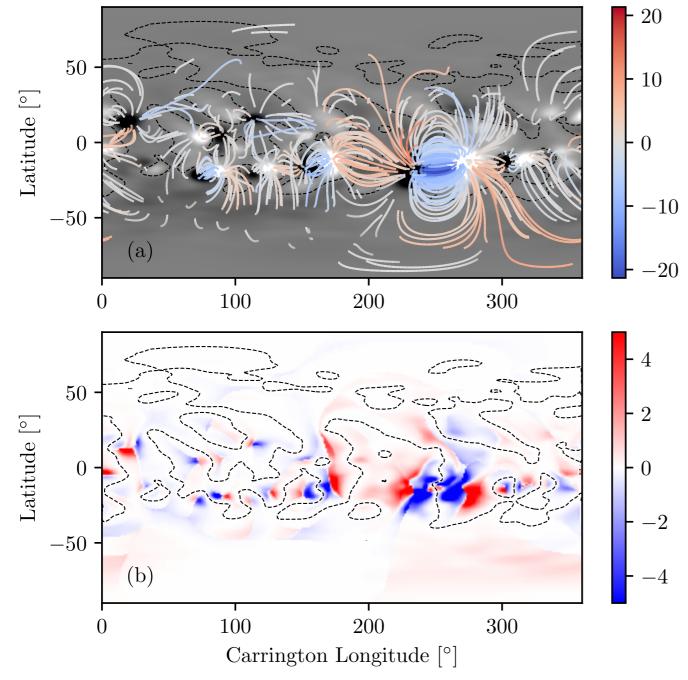
[cf. McMaken-Petrie *ApJ*, 2017] - chirality of EUV loops



Cause of the peak?

The cause of the large peak is a single strong active region NOAA 12192. [Sun et al. 2015]

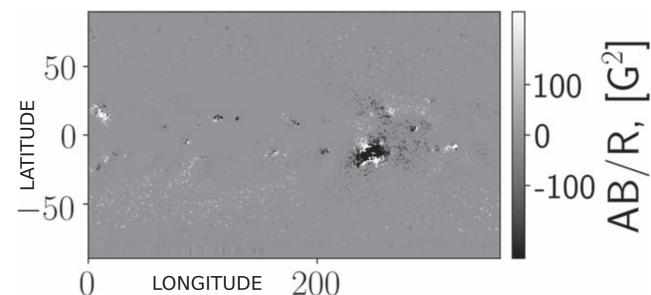




Has negative H because it emerges after polar field reversal with positive leading polarity.

[cf. McMaken-Petrie *ApJ*, 2017] - chirality of EUV loops

[cf. Pipin et al *ApJL*, 2019] - estimate *A.B* from vector magtms:



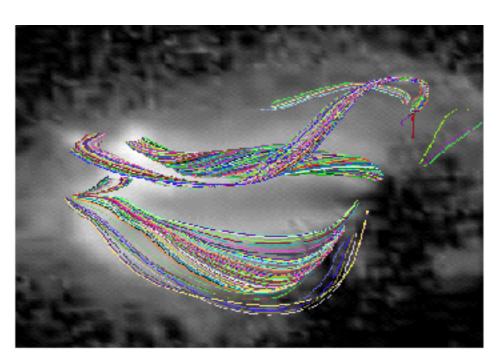
In context

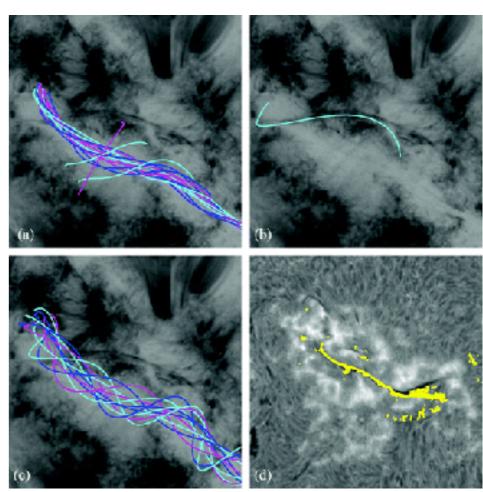
▶ Time-average over global **potential field** (high-res): $\overline{H} = 4 \times 10^{43} \, \text{M} \text{x}^2$

▶ Typical (relative) helicity of a significant non-potential active region:

$$\approx 2 \times 10^{43} \, \text{Mx}^2$$

[DeVore *ApJ*, 2000, Bleybel et al. *A&A* 2002, Bobra et al. *ApJ* 2008, Pevtsov *JApA* 2008, Georgoulis et al *ApJL* 2009]





Conclusion

- Potential fields in the solar corona contain (field line) helicity.
- It predominantly arises from linking of active regions with overlying magnetic field.
- ▶ The total absolute helicity content is comparable to 2 non-potential active regions.
- ▶ The net helicity content is zero globally but can be unbalanced within an active region.
- Can be imprinted on non-potential field, e.g. acting as seed for amplification by photospheric shearing flows [Yeates-Hornig A&A 2016]

More details:

Yeates, The Minimal Helicity of Solar Coronal Magnetic Fields, *ApJL* **898** L49 (2020)

- and references therein

